
Exploiting fine- and coarse-grained
parallelism using a directive based

approach

Arpith C. Jacob, Michael Wong

Ravi Nair, Alexandre E. Eichenberger, Samuel F. Antao,
Carlo Bertolli, Tong Chen, Zehra Sura, Kevin O’Brien

IBM

Summary
• Modern HPC clusters are heterogeneous, employing

light- and heavy-weight cores with accelerators
• Transparently exploiting heterogeneous clusters is

getting increasingly complex
– No single approach for multicores, accelerators, and clusters
– Often requires vendor specific languages and toolchains
– Or unfamiliar languages: X10, Fortress, Chapel, UPC
– Or high overhead frameworks such as Hadoop

• OpenMP 4.0 introduces an offload model suitable for
accelerators with disjoint, non-coherent memory

We present a compiler and runtime that uses
OpenMP 4.0 to offload kernels to nodes in a
cluster 2

Related work

• SDSM
• TreadMarks
• Intel’s Cluster OpenMP

IBM Confidential 3

The OpenMP Accelerator Model
• Host-centric model offloads code + data to target devices
• Programmer identifies code to offload using target

directive
– A target region accepts standard OpenMP parallel directives

• Model defines a data environment for the host and target
devices that may be disjoint
– User may not assume that the host and the target devices share

an address space

• User migrates data using map clause and target data
directive

4

5

Data mapping: shared or distributed memory
(courtesy of Eric, James, Christian, Michael)

A

Memory

Processor Y

Cache

A

Processor X

Cache

A

A

Memory X
Accelertor

Y

A

Memory Y
Processor

X

Cache

A

Shared memory

Distributed memory

• The corresponding variable in the
device data environment may share
storage with the original variable.

• Writes to the corresponding variable

may alter the value of the original
variable.

OpenMP Accelerator Example

6

An Offloading Model for a Cluster
• OpenMP 4.0 offload model is designed for accelerators
• Can it be extended to a cluster?

• Master offloads code and data to workers
• Workers co-opt local threads or may offload to their local

accelerators

• A single program could scale to multicores,
accelerators and multiple nodes

7

Execution Model

8

• Model defines a clique of shared-memory domains laid
out as a tree

• Execution initiates on a host initial thread
• Initial thread on target devices are inactive until activated

by a host thread
• Target construct offloads control from host to other

shared-memory domains
• Initial thread on host or target may co-opt other threads

for parallel execution, for example, using worksharing
constructs

#pragma omp parallel for num_threads(64)
for (i = 0; i < M; i++)
 for (j = 0; j < N; j++)
 A[i][j] += u1[i] * v1[j] + u2[i] * v2[j];

Exploiting Multicores

9

#pragma omp target
#pragma omp parallel for num_threads(1024)
for (i = 0; i < M; i++)
 for (j = 0; j < N; j++)
 A[i][j] += u1[i] * v1[j] + u2[i] * v2[j];

Exploiting GPUs

10

for (i=0; i<10; i++)
 #pragma omp target device(i)
 #pragma omp parallel for num_threads(64)
 for (i = 0; i < M; i++)
 for (j = 0; j < N; j++)
 A[i][j] += u1[i] * v1[j] + u2[i] * v2[j];

Exploiting Multiple Nodes

11

Definitions
• Shared-memory domain: Logical realm of processors

with storage accessible through a global address space.
Cached data within realm is kept coherent by hardware.

• Host Domain: Shared-memory domain on which a
program starts execution

• Target Domain: One or more shared-memory domains
onto which code and data may be offloaded

12

Memory Model

13

• Map clause creates corresponding variable on device for
every original variable on the host
– Naming operation identifies distinct host and target storage

locations
– Data transfer operation moves data between the two locations

• Device data are shared across processors within the
domain

Implementation Details

14

• We have implemented our offloading model for
clusters in Clang/LLVM

• Uses community based implementation for
OpenMP in Clang Status:
– 3.7 has full OpenMP 3.1 support, released in August

2015
– Now upstreaming OpenMP 4.0 directives to 3.8,

planned Feb 2016, Accelerator support of primary
interest

– Have a target–independent interface with LLVM IR
– See talk at LLVM/clang Dev Con on

• “OpenMP GPU/Accelerator support Coming of Age in Clang”

• We have added support for offload directives

People involved bringing OpenMP to
Clang

• Michael Wong, IBM
• Alexey Bataev, Intel
• Sergey Ostanevich, Intel
• Samuel Antao, IBM
• Andrey Bokhanko, Intel
• Carlo Bertolli, IBM
• Eric Stotzer, TI
• Kelvin Li, IBM
• Hal Finkel, Argonne

National Lab
• Arpith Jacob, IBM

• Ravi Nair, IBM
• Tong Chen, IBM
• Zehra Sura, IBM
• Sunita Chandrasekaran,

University of Delaware
• Alexandre Eichenberger,

IBM
• Kevin O’Brien, IBM
• Guansong Zhang, AMD
• Ravi Narayanaswamy,

Intel

IBM Confidential 15

• Lomp : OpenMP runtime for multicores on host and
target devices

• Libomptarget: Manages device data environment
(reference counting) and code offloading

• Target specific plugins: Implements low-level memory
management, data transfer, and code execution
commands (MPI for clusters; CUDA for NVIDIA GPUs)

Implementation Details

16

Target Plugin: Cluster Offloading

17

• Single host binary executes on all MPI ranks
• Workers (rank > 0) enter event loop at program startup

and wait on Host (master)
• Master (rank 0) communicates with workers via MPI

command messages
• Commands: allocate memory on worker, delete memory,

copy to/from worker, load and execute target region
• Uses thread safe MPI library to manage multiple workers

simultaneously

Results: HMM Database Search

18

• Tested on HMM Search (HMMER 3.1b2)
• Compares Query HMM (Hidden Markov Model of protein

family) against database of 3.2 million protein sequences
• We partition database and dynamically offload database

search to between 2 to 64 ranks (16 ranks per node)
• Experiments run on 4 node IBM Power 8 cluster (4

sockets, each with 6 cores)
• We use Open MPI library version 1.8.5

• We compare our results against native MPI

implementation written by authors of HMMER software

Native MPI Implementation

19

• Steps 1-3: Co-opt workers and dynamically offload
database partitions

• Step 4: Barrier synchronize all workers for work
completion

• Step 5-6: Request and receive results from workers

OpenMP Implementation

20

• Master host thread serially iterates over query HMMs
• Parallel for starts num_devices host I/O threads
• Each I/O thread offloads query+DB partition; initiates

execution on device; and collects results on completion

OpenMP Implementation

21

• Worksharing construct partitions DB across ranks
• Dynamic schedule achieves load balancing
• Query/DB copy and results aggregation via map clauses
• Barrier after parallel pragma synchronizes workers

Experimental Results

22

• With static schedule we observe scaling behavior
comparable to native MPI implementation

• Has considerable overhead

Experimental Results

23

• Dynamic schedule reduces runtime up to 50%
• Load balancing achieved through OpenMP runtime

Experimental Results

24

• Establish persistent data environment using target data
directive to reduce overhead

• Investigating additional techniques to reduce data
management overhead (reuse device memory)

Future Work

25

• Exploiting cores in a node: use worksharing construct to
distribute database sequences across device cores

• Beyond offloading: asynchronous updates of host
variables by the target; arbitrary communication between
devices

• Nested target regions: to exploit accelerators within a
node

Conclusions

26

• We have introduced a model and implementation to
program a cluster with OpenMP offload directives

• Results on bioinformatics application shows good scaling
• Compared to native MPI implementation OpenMP

abstractions do work scheduling, load balancing, data
transfer, and synchronization of nodes

	Exploiting fine- and coarse-grained parallelism using a directive based approach
	Summary
	Related work
	The OpenMP Accelerator Model
	Data mapping: shared or distributed memory �(courtesy of Eric, James, Christian, Michael)
	OpenMP Accelerator Example
	An Offloading Model for a Cluster
	Execution Model
	Exploiting Multicores
	Exploiting GPUs
	Exploiting Multiple Nodes
	Definitions
	Memory Model
	Implementation Details
	People involved bringing OpenMP to Clang
	Implementation Details
	Target Plugin: Cluster Offloading
	Results: HMM Database Search
	Native MPI Implementation
	OpenMP Implementation
	OpenMP Implementation
	Experimental Results
	Experimental Results
	Experimental Results
	Future Work
	Conclusions

