Exploiting fine- and coarse-grained
parallelism using a directive based
approach

Arpith C. Jacob, Michael Wong

Ravi Nair, Alexandre E. Eichenberger, Samuel F. Antao,
Carlo Bertolli, Tong Chen, Zehra Sura, Kevin O’Brien

IBM

Summary

« Modern HPC clusters are heterogeneous, employing
light- and heavy-weight cores with accelerators

e Transparently exploiting heterogeneous clusters is
getting increasingly complex
— No single approach for multicores, accelerators, and clusters
— Often requires vendor specific languages and toolchains
— Or unfamiliar languages: X10, Fortress, Chapel, UPC
— Or high overhead frameworks such as Hadoop

« OpenMP 4.0 introduces an offload model suitable for
accelerators with disjoint, non-coherent memory

We present a compiler and runtime that uses
OpenMP 4.0 to offload kernels to nodes in a
cluster

Related work

e SDSM
 TreadMarks
e Intel’s Cluster OpenMP

The OpenMP Accelerator Model

* Host-centric model offloads code + data to target devices

 Programmer identifies code to offload using target
directive
— Atarget region accepts standard OpenMP parallel directives

 Model defines a data environment for the host and target

devices that may be disjoint

— User may not assume that the host and the target devices share
an address space

e User migrates data using map clause and target data
directive

Data mapping: shared or distributed memory
(courtesy of Eric, James, Christian, Michael)

Shared memory

Memory

.

Distributed memory

Memory Y

* The corresponding variable in the
device data environment may share
storage with the original variable.

- —
e Writes to the corresponding variable \

may alter the value of the original
variable.

S F] L] —

OpenMP Accelerator Example

Listing 1.1: Matrix-matrix multiply offioaded to a target device for acceleration.
double A[P][R], B[R][Q], C[P][C];

void main() {
A Initialize arrays

A Offload loop nest for acceleration onto device #1
#pragma omp target map(to: A[0:P][0:R], B[0:R][0:Q]) map(tofrom: C[0:P][0:R]) device(1)
A Execute iterations of loop i in parailel on 16 accelerator cores
#pragma omp parallel for num_threads(16)
for (int i=0; i<P; i++)
for (int j=0; j<Q; j++)
for (int k=0; k<H; k++)
Cli][i] += Alil[k] = B{k][]]

& Computed array C is available on the host
}

An Offloading Model for a Cluster

OpenMP 4.0 offload model is designed for accelerators
Can it be extended to a cluster?

Master offloads code and data to workers

Workers co-opt local threads or may offload to their local
accelerators

host .
multicore

target
devices

multicore multicore multicore

A single program could scale to multicores,
accelerators and multiple nodes

Execution Model

Model defines a clique of shared-memory domains laid
out as a tree

Execution Initiates on a host initial thread

Initial thread on target devices are inactive until activated
by a host thread

Target construct offloads control from host to other
shared-memory domains

Initial thread on host or target may co-opt other threads
for parallel execution, for example, using worksharing
constructs

Exploiting Multicores

#pragma omp parallel for num_threads(64)
for (I=0; 1< M; I++)
for (j =0;] <N; j++)
AN] +=ud[i] * vi[j] + u2[i] * v2[j];

Exploiting GPUs

#pragma omp target
#pragma omp parallel for num_threads(1024)
for (I1=0; i< M; i++)
for j =0;] <N; j++)
ADJO] += ul[i] * vif] + u2[i] * v2[j];

10

Exploiting Multiple Nodes

for (i=0; i<10; i++)
#pragma omp target device(i)
#pragma omp parallel for num_threads(64)
for(i=0;1< M, i++)
for (j =0;) < N; J++)
AD] += ul[i] * vaf] + u2[i] * v2[j];

11

Definitions

 Shared-memory domain: Logical realm of processors
with storage accessible through a global address space.
Cached data within realm is kept coherent by hardware.

« Host Domain: Shared-memory domain on which a
program starts execution

« Target Domain: One or more shared-memory domains
onto which code and data may be offloaded

12

Memory Model

e Map clause creates corresponding variable on device for
every original variable on the host

— Naming operation identifies distinct host and target storage
locations

— Data transfer operation moves data between the two locations
« Device data are shared across processors within the
domain

Implementation Detalls

 We have implemented our offloading model for
clusters in Clang/LLVM

e Uses community based implementation for
OpenMP in Clang Status:

— 3.7 has full OpenMP 3.1 support, released in August
2015

— Now upstreaming OpenMP 4.0 directives to 3.8,

planned Feb 2016, Accelerator support of primary
Interest

— Have a target—independent interface with LLVM IR
— See talk at LLVM/clang Dev Con on
e “OpenMP GPU/Accelerator support Coming of Age in Clang”

 We have added support for offload directives

People involved bringing OpenMP to
Clang

Michael Wong, IBM
Alexey Bataey, Intel
Sergey Ostanevich, Intel
Samuel Antao, IBM
Andrey Bokhanko, Intel
Carlo Bertolli, IBM

Eric Stotzer, Ti

Kelvin Li, IBM

Hal Finkel, Argonne
National Lab

Arpith Jacob, IBM

IBM Confidential

Ravi Nair, IBM
Tong Chen, IBM
Zehra Sura, IBM

Sunita Chandrasekaran,
University of Delaware

Alexandre Eichenberger,
IBM

Kevin O’Brien, IBM
Guansong Zhang, AMD

Ravi Narayanaswamy,
Intel

15

Implementation Detalls

lomp

host
code

GPU code
! omp-nvptx

target data

CPU code

host

libomptarget

GPU offload

= CPU offload

' target ':
‘' CPUs .

Lomp : OpenMP runtime for multicores on host and
target devices

Libomptarget: Manages device data environment
(reference counting) and code offloading

Target specific plugins: Implements low-level memory
management, data transfer, and code execution
commands (MPI for clusters; CUDA for NVIDIA GPUSs)

16

Target Plugin: Cluster Offloading

e Single host binary executes on all MPI ranks

 Workers (rank > 0) enter event loop at program startup
and wait on Host (master)

« Master (rank 0) communicates with workers via MPI
command messages

« Commands: allocate memory on worker, delete memory,
copy to/from worker, load and execute target region

e Uses thread safe MPI library to manage multiple workers
simultaneously

17

Results: HMM Database Search

 Tested on HMM Search (HMMER 3.1b2)

« Compares Query HMM (Hidden Markov Model of protein
family) against database of 3.2 million protein sequences

« We partition database and dynamically offload database
search to between 2 to 64 ranks (16 ranks per node)

e Experiments run on 4 node IBM Power 8 cluster (4
sockets, each with 6 cores)

 We use Open MPI library version 1.8.5

 We compare our results against native MPI
Implementation written by authors of HMMER software

Native MPI| Implementation

Steps 1-3: Co-opt workers and dynamically offload
database partitions

Step 4: Barrier synchronize all workers for work
completion

Step 5-6: Request and receive results from workers

mpi_master(): mpi_worker():
foreach (query : HMM) foreach (query : HMM)
foreach (block : DB) // Worker ready for processing

// Wait for a worker to connect 1 MPI_Send()

MPI_Probe() “#‘____,_.,__,_.———--

MPI Recv() // READY received // Receive work

// Send work to worker —» While block = MPI Recv()

MPI_Send(&block) foreach (sequence : block)
p7_Pipeline(sequence)

// Wait for all workers to complete
foreach (worker : WORKERS)
MPI_Probe()
MPI Recv() // READY received -

// Ready for next block of work
MPI_Send()

// Send results

// Request results from workers 5 6 MPI_Send()
foreach (worker : WORKERS)

MPI Send() // Send empty block

MPI_Recv() // Results received

19

OpenMP Implementation

Master host thread serially iterates over query HMMs
Parallel for starts num_devices host |/O threads

Each I/O thread offloads query+DB partition; initiates
execution on device; and collects results on completion

target():
foreach (query : HMM)
// In parallel, activate a dedicated thread for each device
// and schedule work dynamically
#pragma omp parallel for schedule(dynamic) \
num_threads(num_devices)
foreach (block : DB)
device = omp_get thread num()
// Thread sends work to its device and waits for results
1 #pragma omp target device(device) map(to:block, query) \
map (from: results) {
foreach (sequence : block)
p/_Pipeline(sequence)

};>2

20

OpenMP Implementation

Worksharing construct partitions DB across ranks
Dynamic schedule achieves load balancing

Query/DB copy and results aggregation via map clauses
Barrier after parallel pragma synchronizes workers

target():
foreach (query : HMM)
// In parallel, activate a dedicated thread for each device
// and schedule work dynamically
#pragma omp parallel for schedule(dynamic) \
num_threads(num_devices)
foreach (block : DB)
device = omp_get thread num()
// Thread sends work to its device and waits for results
1 #pragma omp target device(device) map(to:block, query) \
map (from: results) {
foreach (sequence : block)
p/_Pipeline(sequence)
}>2

21

Experimental Results

104
, MP| —m—
static —e—

Execution time (secs)
—
o
w

-
o
N

10 20 30 40 50 60 70
Domains (MPI ranks)
 With static schedule we observe scaling behavior
comparable to native MPI implementation

» Has considerable overhead

-

Experimental Results

—
()
~

MP| —a—
static —e—
dynamic ——

Execution time (secs)
—
o
w

—_
o
N

0 10 20 30 40 50 60 70
Domains (MPI ranks)

Dynamic schedule reduces runtime up to 50%
Load balancing achieved through OpenMP runtime

23

Experimental Results

MP| —a—

static —e—

dynamic ——
dynamic-dataopt —a—

—
()
~

Execution time (secs)
—
o
w

—_
o
N

10 20 30 40 50 60 70
Domains (MPI ranks)

Establish persistent data environment using target data

directive to reduce overhead

Investigating additional techniques to reduce data
management overhead (reuse device memory) 2

o

Future Work

e EXxploiting cores in a node: use worksharing construct to
distribute database sequences across device cores

 Beyond offloading: asynchronous updates of host
variables by the target; arbitrary communication between
devices

* Nested target regions: to exploit accelerators within a
node

Conclusions

 We have introduced a model and implementation to
program a cluster with OpenMP offload directives

e Results on bioinformatics application shows good scaling

e Compared to native MPI implementation OpenMP
abstractions do work scheduling, load balancing, data
transfer, and synchronization of nodes

	Exploiting fine- and coarse-grained parallelism using a directive based approach
	Summary
	Related work
	The OpenMP Accelerator Model
	Data mapping: shared or distributed memory �(courtesy of Eric, James, Christian, Michael)
	OpenMP Accelerator Example
	An Offloading Model for a Cluster
	Execution Model
	Exploiting Multicores
	Exploiting GPUs
	Exploiting Multiple Nodes
	Definitions
	Memory Model
	Implementation Details
	People involved bringing OpenMP to Clang
	Implementation Details
	Target Plugin: Cluster Offloading
	Results: HMM Database Search
	Native MPI Implementation
	OpenMP Implementation
	OpenMP Implementation
	Experimental Results
	Experimental Results
	Experimental Results
	Future Work
	Conclusions

