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Summary

« Modern HPC clusters are heterogeneous, employing
light- and heavy-weight cores with accelerators

e Transparently exploiting heterogeneous clusters is
getting increasingly complex
— No single approach for multicores, accelerators, and clusters
— Often requires vendor specific languages and toolchains
— Or unfamiliar languages: X10, Fortress, Chapel, UPC
— Or high overhead frameworks such as Hadoop

« OpenMP 4.0 introduces an offload model suitable for
accelerators with disjoint, non-coherent memory

We present a compiler and runtime that uses
OpenMP 4.0 to offload kernels to nodes in a
cluster




Related work

e SDSM
 TreadMarks
e Intel’s Cluster OpenMP



The OpenMP Accelerator Model

* Host-centric model offloads code + data to target devices

 Programmer identifies code to offload using target
directive
— Atarget region accepts standard OpenMP parallel directives

 Model defines a data environment for the host and target

devices that may be disjoint

— User may not assume that the host and the target devices share
an address space

e User migrates data using map clause and target data
directive



Data mapping: shared or distributed memory
(courtesy of Eric, James, Christian, Michael)

Shared memory

Memory
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Distributed memory

Memory Y

* The corresponding variable in the
device data environment may share
storage with the original variable.

- —
e Writes to the corresponding variable \

may alter the value of the original
variable.
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OpenMP Accelerator Example

Listing 1.1: Matrix-matrix multiply offioaded to a target device for acceleration.
double A[P][R], B[R][Q], C[P][C];

void main() {
A Initialize arrays

A Offload loop nest for acceleration onto device #1
#pragma omp target map(to: A[0:P][0:R], B[0:R][0:Q]) map(tofrom: C[0:P][0:R]) device(1)
A Execute iterations of loop i in parailel on 16 accelerator cores
#pragma omp parallel for num_threads(16)
for (int i=0; i<P; i++)
for (int j=0; j<Q; j++)
for (int k=0; k<H; k++)
Cli][i] += Alil[k] = B{k][]]

& Computed array C is available on the host
}




An Offloading Model for a Cluster

OpenMP 4.0 offload model is designed for accelerators
Can it be extended to a cluster?

Master offloads code and data to workers

Workers co-opt local threads or may offload to their local
accelerators

host .
multicore

target
devices

multicore multicore multicore

A single program could scale to multicores,
accelerators and multiple nodes



Execution Model

Model defines a clique of shared-memory domains laid
out as a tree

Execution Initiates on a host initial thread

Initial thread on target devices are inactive until activated
by a host thread

Target construct offloads control from host to other
shared-memory domains

Initial thread on host or target may co-opt other threads
for parallel execution, for example, using worksharing
constructs



Exploiting Multicores

#pragma omp parallel for num_threads(64)
for (I=0; 1< M; I++)
for (j =0; ] <N; j++)
AN] +=ud[i] * vi[j] + u2[i] * v2[j];



Exploiting GPUs

#pragma omp target
#pragma omp parallel for num_threads(1024)
for (I1=0; i< M; i++)
for j =0; ] <N; j++)
ADJO] += ul[i] * vif] + u2[i] * v2[j];
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Exploiting Multiple Nodes

for (i=0; i<10; i++)
#pragma omp target device(i)
#pragma omp parallel for num_threads(64)
for(i=0;1< M, i++)
for (j =0; ) < N; J++)
AD] += ul[i] * vaf] + u2[i] * v2[j];
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Definitions

 Shared-memory domain: Logical realm of processors
with storage accessible through a global address space.
Cached data within realm is kept coherent by hardware.

« Host Domain: Shared-memory domain on which a
program starts execution

« Target Domain: One or more shared-memory domains
onto which code and data may be offloaded
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Memory Model

e Map clause creates corresponding variable on device for
every original variable on the host

— Naming operation identifies distinct host and target storage
locations

— Data transfer operation moves data between the two locations
« Device data are shared across processors within the
domain



Implementation Detalls

 We have implemented our offloading model for
clusters in Clang/LLVM

e Uses community based implementation for
OpenMP in Clang Status:

— 3.7 has full OpenMP 3.1 support, released in August
2015

— Now upstreaming OpenMP 4.0 directives to 3.8,

planned Feb 2016, Accelerator support of primary
Interest

— Have a target—independent interface with LLVM IR
— See talk at LLVM/clang Dev Con on
e “OpenMP GPU/Accelerator support Coming of Age in Clang”

 We have added support for offload directives
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Implementation Detalls

lomp

host
code

GPU code
! omp-nvptx

target data

CPU code

host

libomptarget

GPU offload

= CPU offload

'  target ':
‘' CPUs .

Lomp : OpenMP runtime for multicores on host and
target devices

Libomptarget: Manages device data environment
(reference counting) and code offloading

Target specific plugins: Implements low-level memory
management, data transfer, and code execution
commands (MPI for clusters; CUDA for NVIDIA GPUSs)
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Target Plugin: Cluster Offloading

e Single host binary executes on all MPI ranks

 Workers (rank > 0) enter event loop at program startup
and wait on Host (master)

« Master (rank 0) communicates with workers via MPI
command messages

« Commands: allocate memory on worker, delete memory,
copy to/from worker, load and execute target region

e Uses thread safe MPI library to manage multiple workers
simultaneously
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Results: HMM Database Search

 Tested on HMM Search (HMMER 3.1b2)

« Compares Query HMM (Hidden Markov Model of protein
family) against database of 3.2 million protein sequences

« We partition database and dynamically offload database
search to between 2 to 64 ranks (16 ranks per node)

e Experiments run on 4 node IBM Power 8 cluster (4
sockets, each with 6 cores)

 We use Open MPI library version 1.8.5

 We compare our results against native MPI
Implementation written by authors of HMMER software



Native MPI| Implementation

Steps 1-3: Co-opt workers and dynamically offload
database partitions

Step 4: Barrier synchronize all workers for work
completion

Step 5-6: Request and receive results from workers

mpi_master(): mpi_worker():
foreach (query : HMM) foreach (query : HMM)
foreach (block : DB) // Worker ready for processing

// Wait for a worker to connect 1 MPI_Send()

MPI_Probe() “#‘____,_.,__,_.———--

MPI Recv() // READY received // Receive work

// Send work to worker —» While block = MPI Recv()

MPI_Send(&block) foreach (sequence : block)
p7_Pipeline(sequence)

// Wait for all workers to complete
foreach (worker : WORKERS)
MPI_Probe()
MPI Recv() // READY received -

// Ready for next block of work
MPI_Send()

// Send results

// Request results from workers 5 6 MPI_Send()
foreach (worker : WORKERS)

MPI Send() // Send empty block

MPI_Recv() // Results received
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OpenMP Implementation

Master host thread serially iterates over query HMMs
Parallel for starts num_devices host |/O threads

Each I/O thread offloads query+DB partition; initiates
execution on device; and collects results on completion

target():
foreach (query : HMM)
// In parallel, activate a dedicated thread for each device
// and schedule work dynamically
#pragma omp parallel for schedule(dynamic) \
num_threads(num_devices)
foreach (block : DB)
device = omp_get thread num()
// Thread sends work to its device and waits for results
1 #pragma omp target device(device) map(to:block, query) \
map (from: results) {
foreach (sequence : block)
p/_Pipeline(sequence)

};>2
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OpenMP Implementation

Worksharing construct partitions DB across ranks
Dynamic schedule achieves load balancing

Query/DB copy and results aggregation via map clauses
Barrier after parallel pragma synchronizes workers

target():
foreach (query : HMM)
// In parallel, activate a dedicated thread for each device
// and schedule work dynamically
#pragma omp parallel for schedule(dynamic) \
num_threads(num_devices)
foreach (block : DB)
device = omp_get thread num()
// Thread sends work to its device and waits for results
1 #pragma omp target device(device) map(to:block, query) \
map (from: results) {
foreach (sequence : block)
p/_Pipeline(sequence)
}>2
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Experimental Results
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 With static schedule we observe scaling behavior
comparable to native MPI implementation

» Has considerable overhead
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Experimental Results
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Dynamic schedule reduces runtime up to 50%
Load balancing achieved through OpenMP runtime
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Experimental Results
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Future Work

e EXxploiting cores in a node: use worksharing construct to
distribute database sequences across device cores

 Beyond offloading: asynchronous updates of host
variables by the target; arbitrary communication between
devices

* Nested target regions: to exploit accelerators within a
node



Conclusions

 We have introduced a model and implementation to
program a cluster with OpenMP offload directives

e Results on bioinformatics application shows good scaling

e Compared to native MPI implementation OpenMP
abstractions do work scheduling, load balancing, data
transfer, and synchronization of nodes
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