
Application-level
Energy Awareness for OpenMP

Ferdinando Alessi1, Peter Thoman1, Giorgis Georgakoudis2

Thomas Fahringer1, and Dimitrios S. Nikolopoulos2

1University of Innsbruck, 2Queen’s University of Belfast

Agenda

 Introduction

 Language Extensions

 Objective Clause

 User-defined Tunable Parameters

 Prototype Implementation

 Compilation

 Runtime Optimization

 Evaluation

 Discussion

2 2015-10-02Peter Thoman - IWOMP 2015

Introduction

Background

 Modern use cases often feature multiple optimization goals

 Not just execution time, also e.g. energy or power consumption

 Relevant in embedded and mobile systems, but also HPC!

 Control of parallelism is a major tradeoff factor

 Might differ according to program region

 Needs application-level knowledge

 Idea:
Extend OpenMP to allow programmers to steer multi-objective
optimization and enable application-level tuning

4 2015-10-02Peter Thoman - IWOMP 2015

Motivation
- Video decoder application

2015-10-02Peter Thoman - IWOMP 20155

5
0

%
 en

ergy savin
gs!

Language Extensions

A non-functional parameter, currently:
T (execution time), P (power),
E (energy), Q (quality of service)

Multi-objective Optimization Clause

 Define a new clause which allows the programmer
to specify an optimization goal function and constraints

 objective(weights [: constraints])

 weights = f1 ∗P1 + f2 ∗P2 + ··· + fN ∗PN

 constraints = {Pi < ci; constraints}|∅

Base language expressions of a numeric type

2015-10-02Peter Thoman - IWOMP 20157

Multi-objective Optimization Clause

 Define a new clause which allows the programmer
to specify an optimization goal function and constraints

 objective(weights [: constraints])

 weights = f1 ∗P1 + f2 ∗P2 + ··· + fN ∗PN

 constraints = {Pi < ci; constraints}|∅

 Can be applied to parallel, for and task constructs

2015-10-02Peter Thoman - IWOMP 20158

Objective Clause Examples

2015-10-02Peter Thoman - IWOMP 20159

#pragma omp parallel objective(E)

#pragma omp for objective(0.8∗E+0.2∗T)

double p;
…
#pragma omp task objective(T : P<p)

 Minimize energy consumption in the binding parallel region

 Weighted energy (0.8) & time (0.2) optimization in this for loop

 Complete this task in minimum time while staying below the
given power consumption p

Tunable Parameters

2015-10-02Peter Thoman - IWOMP 201510

 In order to achieve optimization goals,
the runtime system can adjust various parameters:

 Degree of parallelism (DOP), dynamic voltage and frequency
scaling (DVFS), …

 However, there are also application-specific parameters

 Either non-functional, e.g. tiling sizes in a numeric algorithm

 Or influencing the quality of service, e.g. image, audio or video
quality in decoders

Tunable Parameter Clause

2015-10-02Peter Thoman - IWOMP 201511

 A new clause which allows the programmer to
expose application-level tunable parameters

 param(var, (range(value-range [: q-range])
| enum(values, size [: q-values])))

 value-range = q-range = start, end, step

Base language array
of same type as var

Base language expressions of a numeric typeBase language variable

Tunable Parameter Clause

2015-10-02Peter Thoman - IWOMP 201512

 A new clause which allows the programmer to
expose application-level tunable parameters

 param(var, (range(value-range [: q-range])
| enum(values, size [: q-values])))

 value-range = q-range = start, end, step

 Can be applied to parallel, for and task constructs

 If used without objective, assume objective(T)

Parameter Clause Examples

2015-10-02Peter Thoman - IWOMP 201513

#pragma … param(rate, range(24, 74, 10))

#pragma … param(rate, range(24,74,10 : 5,0,-1))

#pragma … param(method, enum(methods, N))

 rate can be freely set to 23, 34, …, 74 in the binding region

 Associates a quality of service with each setting

 E.g. rate=34  Q=4

 method can be set to any entry in the methods array

 E.g. Function pointers implementing different solvers

Region Construct

2015-10-02Peter Thoman - IWOMP 201514

 For completeness, allow applying different
optimization / parameters independent of parallelization

 #pragma omp region [objective(…)] [param(…)]
structured-block

 Applies the given objective and parameters for the
binding structured block

Prototype Implementation

Implementation Background

2015-10-02Peter Thoman - IWOMP 201516

 Implemented in the Insieme Compiler

 A source-to-source C/C++ compiler framework
 Frontend based on Clang

 Backend targets GCC/ICC/llvm + the Insieme runtime system

 Core: Analysis and transformation based on INSPIRE

 Insieme Runtime System
 Based on user-space task scheduling with work stealing

 Previously used in OpenMP loop and task optimization

Automatic OpenMP Loop Scheduling: A Combined Compiler and Runtime Approach (IWOMP2012)
INSPIRE: The Insieme Parallel Intermediate Representation (PACT2013)

Compiler Multiversioning for Automatic Task Granularity Control (CCPE2014)

Implementation Overview

2015-10-02Peter Thoman - IWOMP 201517

Frontend Backend

Implementation Overview

2015-10-02Peter Thoman - IWOMP 201518

Frontend Backend

The Insieme Frontend encodes objectives and
parameters as meta-information annotations
on the relevant INSPIRE nodes

1

1

Implementation Overview

2015-10-02Peter Thoman - IWOMP 201519

Frontend Backend

Meta-information annotations are encoded
in the generated C program for each region
- as static data if compile-time constant, as
outlined, callable functions otherwise

2

2

Implementation Overview

2015-10-02Peter Thoman - IWOMP 201520

Frontend Backend

During execution, each region with an
objective annotation executes an additional
configuration and evaluation step at its entry
and exit

3 3

Runtime Optimization

2015-10-02Peter Thoman - IWOMP 201521

 Muti-stage (per-region) search approach

1. Random selection until a threshold number of times T

2. Hill climbing until no improvement in any dimension

 Assumptions:

 Regions to optimize are executed multiple times

 Region behaviour doesn‘t change significantly

Random
Selection

Hillclimbing DT

Runtime Optimization

2015-10-02Peter Thoman - IWOMP 201522

 In evaluation steps:

 Need to compute goal function and check constraints

 Obtain values for paramters:

 Q: directly from setting and user-defined mapping

 T: fine-grained per-region measurements in Insieme Runtime System

 P and E require hardware-specific support

 Energy/power: we use RAPL on Intel and a custom library
(directly accessing HW sensors) on the XU+E ARM board

 Hardware readout frequency limits minimum time granularity
possible during optimization

Evaluation

Experiment Setup

2015-10-02Peter Thoman - IWOMP 201524

 Hardware: 2 device classes: desktop and mobile

 Desktp: Intel i7-3770k Ivy Bridge quad core

 Mobile: ODROID XU+E development board

 Exynos 5 Octa with 2 core clusters: 4 A15 and 4 A7 cores

 Application: video decoder from MediaBench

 Used tmndec for simplicity of OpenMP parallelization

 Added optional horizontal and vertical deposterization filters
to test multiple load scenarios

 Reference run: ondemand CPU frequency governor

Tmndec Main Loop Pseudocode

2015-10-02Peter Thoman - IWOMP 201525

 Read as:

 Optimize for energy

 While maintaining the target framerate

 Allow setting the scaling parameter up to 2

#pragma omp parallel for schedule(dynamic) \
objective(E : T < 1 / f_rate; Q<3) \
param(scaling, range(1,8,1))

for (int y=0; y<rows; y+=2*scaling)
for (int x=0; x<cols_2; x+=scaling)

...

Results - desktop

2015-10-02Peter Thoman - IWOMP 201526

Results - mobile

2015-10-02Peter Thoman - IWOMP 201527

Sleeping periods too short:
 ondemand governor
doesn‘t perform any DVFS

Ondemand gov.
uses same DVFS
level

Discussion

Related Work

2015-10-02Peter Thoman - IWOMP 201529

 Energy management has been investigated in and across
all components of the system software stack

 Also in combination with OpenMP and DVFS/DCT

 Generally does not take into account application-level
knowledge!

 Application-level approaches are often domain-specific,
and usually per-program rather than per-region

Problems / Future Opportunities

2015-10-02Peter Thoman - IWOMP 201530

 How to deal with co-running applications?

 Need OS-level component or user-space orchestrator

 May have conflicting goals and distinct optimal configurations

 SLAs?

 Limited optimization strategy

 How can we optimize regions which only run once or a small
number of times?

 Improve user-define tunable parameter support

 Is a simple mapping to a single quality metric sufficient?

 Provide guidance to expected impact on metrics

Conclusion

2015-10-02Peter Thoman - IWOMP 201531

 We propose an interface for...
 Setting per-region multi-objective goals and constraints

 Exposing application-level tunable parameters to the runtime
system

 Compared to previous work, it‘s more generic and flexible
as well as easier to integrate into existing code bases

 Our prototype implementation shows possibilities for
energy savings in several scenarios
 Requiring only two clauses on the main parallel loop

Thank You!

 Questions?

32 2015-10-02Peter Thoman - IWOMP 2015

https://github.com/insieme/insieme

http://www.insieme-compiler.org

petert@dps.uibk.ac.at

https://github.com/insieme/insieme
http://www.insieme-compiler.org/
mailto:petert@dps.uibk.ac.at

