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1. Introduction

var = op(var, expression)

● Defined as recurrent update over a variable by applying an 
associative and commutative operator

● Dot product

float res = 0.0f;
float v1[N], v2[N];
…
for (int i = 0; i < N; ++i)

res += v1[i] * v2[i];
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1. Introduction

var = op(var, expression)

● Defined as recurrent update over a variable by applying an 
associative and commutative operator

● Dot product

float res = 0.0f;
float v1[N], v2[N];
…
#pragma omp parallel for reduction(+: res)
for (int i = 0; i < N; ++i)

res += v1[i] * v2[i];
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1. Introduction

res

p_resNp_res2p_res1

...

#pragma omp parallel for reduction(+: res)

(implicit barrier)
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1. Introduction

● Reduction over a linked list ● NQueens

int res = 0;
node_t* node = NULL;
…
while (node) {

res += node->value;
node = node->next;

}

int nqueens(int row, ...){
  if(row == lastRow)

return 1;

  int res = 0;
  for (int i=0; i<lastRow; ++i)
    if(check_attack(...))
        res += nqueens(...);
     
  return res;
}
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1. Introduction

● Reduction over a linked list ● NQueens

int res = 0;
node_t* node = NULL;
…
while (node) {

res += node->value;
node = node->next;

}

int nqueens(int row, ...){
  if(row == lastRow)

return 1;

  int res = 0;
  #pragma omp parallel for \ 

  reduction(+: res)
  for (int i=0; i<lastRow; ++i)
    if(check_attack(...))
        res += nqueens(...);
     
  return res;
}

We cannot solve this problem 
directly with the actual OpenMP 
reduction support!

It works but It has some disadvantatges
● OMP_NESTED=1
● Cut-off
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2. Motivation

● Tasks are useful for irregular algorithms...

● but they don't support reductions (yet)    :(

int res = 0;
node_t* node = NULL;
...
while (node) {

res += node->value;
node = node->next;

}

int res = 0;
node_t* node = NULL;
...
#pragma omp parallel
{
  #pragma omp single
  {
    while (node)
    {
     #pragma omp task ???
        res += node->value;
      
      node = node->next;
    }
  }
}
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2. Motivation

● Reduction over a linked list using task dependences

int res = 0;
node_t* node = NULL;
...
#pragma omp parallel
{
  #pragma omp single
  {
    while (node)
    {
     #pragma omp task \
        firstprivate(node) shared(res) \
        depend(inout: res)
    
        res += node->value;
      
      node = node->next;
    }
  } // [1]
}

int res = 0;
node_t* node = NULL;
...
while (node) {
  res += node->value;
  node = node->next;
}

[1] all tasks have been executed
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2. Motivation

● Reduction over a linked list using atomics

int res = 0;
node_t* node = NULL;
...
#pragma omp parallel
{
  #pragma omp single
  {
    while (node)
    {
     #pragma omp task \
        firstprivate(node) shared(res)
      {
        #pragma omp atomic
        res += node->value;
      }
      node = node->next;
    }
  } // [1]
}

int res = 0;
node_t* node = NULL;
...
while (node) {
  res += node->value;
  node = node->next;
}

[1] all tasks have been executed
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2. Motivation: avoiding boilerplate codes

● Reduction over a linked list using threadprivate directive

int res = 0;
int part_res = 0;
#pragma omp threadprivate(part_res)
node_t* node = NULL;
...
#pragma omp parallel
{
  #pragma omp single
  {
    while (node) {
      #pragma omp task \  

firstprivate(node)
        part_res += node->value;
      
      node = node->next;
    }
  } // [1]

}

[1] all tasks have been executed. 
part_res thread private variables 
contain the partial results of the 
reduction

int res = 0;
node_t* node = NULL;
...
while (node) {
  res += node->value;
  node = node->next;
}
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2. Motivation: avoiding boilerplate codes

● Reduction over a linked list using threadprivate directive

int res = 0;
int part_res = 0;
#pragma omp threadprivate(part_res)
node_t* node = NULL;
...
#pragma omp parallel reduction(+:res)
{
  #pragma omp single
  {
    while (node) {
      #pragma omp task \  

firstprivate(node)
        part_res += node->value;
      
      node = node->next;
    }
  } // [1]
  res += part_res;
} // [2]

int res = 0;
node_t* node = NULL;
...
while (node) {
  res += node->value;
  node = node->next;
}

[1] all tasks have been executed. 
part_res thread private variables 
contain the partial results of the 
reduction

[2] final reduction
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2. Motivation: avoiding boilerplate codes

● Reduction over a linked list using additional storage

int res = 0;
int part_res[omp_get_max_threads()]={0};
node_t* node = NULL;
...
#pragma omp parallel reduction(+:res)
{
  #pragma omp single
  {
    while (node) {
      #pragma omp task \   

  firstprivate(node)
{
 int id = omp_get_thread_num(); 

        part_res[id] += node->value;
}

      node = node->next;
    }
  } // [1]
  res+=part_res[omp_get_thread_num()];
} // [2]

[1] all tasks have been executed. 
part_res contains the partial results 
of the reduction

[2] final reduction

int res = 0;
node_t* node = NULL;
...
while (node) {
  res += node->value;
  node = node->next;
}
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3. Related Work

● Previous attempts (OpenMP Lang)

● Grant Haab & Federico Massaioli’s proposal

● Alex Duran’s  proposal

● IWOMP 2014

● Ciesko, J.,  Mateo, S., Teruel, X., Beltran, V.,  Martorell, X., Badia, R.M., 
Ayguadé, E., Labarta, J.: Task-Parallel Reductions in OpenMP and OmpSs

● General approach

– Reducing on task dependences, taskwait, barrier and at the end of a 
taskgroup

● Prototype implementation

● Evaluation comparing our implementation with manual atomic approach
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3. Related Work: feedback

● The taskgroup construct defines the scope of the reduction

● The specification should allow several implementations

● Number of private copies

● Calls to the combiner

● Related issues

● Supporting untied tasks

● Nested taskgroup reductions
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4. Contribution

● Extending taskgroup clauses to support reduction clause

● Syntax

● Semantics: defines the reduction scope

#pragma omp taskgroup reduction(red-id: list_items)
structured-block

#pragma omp task in_reduction(red-id: list_items)
structured-block

●  Extending task construct to support in_reduction clause

● Syntax

● Semantics: defines a task as a participant of a previously 
registered task reduction
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4. Contribution: example

● Our proposal
int res = 0;
node_t* node = NULL;
...
#pragma omp parallel
{
  #pragma omp single
  {
    #pragma omp taskgroup reduction(+:res)
    { // [1]
      while (node)
      {
        #pragma omp task \

firstprivate(node) \
in_reduction(+:res) 

          res += node->value; // [2]
        node = node->next;
      }
    }// [3]
  }
}    

[1] registering a new reduction

[2] working with a private copy

[3] final reduction

int res = 0;
node_t* node = NULL;
...
while (node) {
  res += node->value;
  node = node->next;
}
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4. Contribution: our implementation decisions
● We register a private copy for each implicit task (thread) at the 

beginning of the taskgroup construct

● Tasks that participate in a previously registered reduction just ask 
for the private storage of the thread that execute them

● Untied reduction tasks  are implemented as tied tasks

● Nested taskgroups performing a reduction over the same variable 
do not reuse the same private storage



Performance results
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5. Evaluation
● We compare the performance of our prototype implementation 

against a manual reduction implementation  using threadprivate 
storage

● We tested our prototype in two environments:

● Intel Xeon processors

– GCC 4.7.2 as native compiler
● Intel Xeon Phi coprocessors

– Intel 15.0.2 as native compiler

● In both scenarios we used Mercurium source-to-source compiler v1.99.8 
and Nanos++ RTL v0.9a
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5. Evaluation: benchmark descriptions

Array Sum: it computes the sum of N elements. We create a task for each 
TS elements

Dot Product: it computes the sum of the products of the components of two 
vectors of N elements. As before, we create a task for each TS elements

NQueens: it computes the number of configurations of placing N Queens in 
a N x N chessboard such that none of them is able to attack to any other. 
We use the final clause as a cut-off.
● Global version: we reduce over a global variable, so we only register one 

reduction for all the execution
● Local version: we reduce over a local variable. This means that we 

register a new reduction at each recursive level

UTS: this benchmark computes the number of nodes in a implicitly defined 
unbalanced tree



Results on Intel Xeon processors
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5. Evaluation: Array Sum and dot product
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● Similar scalability: up to 
10x using 16 threads

● The relative perfomance 
(manual perf. / prototype 
perf.) is close to 1

● Similar scalability: up to 6x 
using 16 threads
● not enough work
● NUMA

● The relative perfomance 
(manual perf. / prototype 
perf.) is close to 1
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5. Evaluation: NQueens
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● Similar scalability: up to 
14x using 16 threads

● The relative perfomance 
(manual perf. / prototype 
perf.) is close to 1

● The scalability of our 
approach is better than the 
manual versions

● The  perfomance of our 
approach is 5% higher than 
the best manual version
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5. Evaluation: UTS
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● Several executions: 50k, 
100k, 500k and 1000k

● not using  final clause

● Task granularity is fixed

● The scalability of all the 
versions is similar

● The relative performances are 
between 0.96-0.99

● The scenario with the worse 
performance is also the one 
that has the higher number of 
tasks



Results on Intel Xeon Phi coprocessors
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5. Evaluation: Array Sum

● The scalability of our approach is 
better: up to 85x using 60 cores

● The performance of our 
approach is a bit better  than the 
performance of the manual 
version
● But it's not significant since the 

exeuction times are small

Important: we only show the results of the best configuration 
of threads per core
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5. Evaluation: NQueens
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● similar scalability: up to 
90x using 60 cores and 
two threads per core

● The relative performance 
is almost one in all the 
scenarios 

● similar scalability to the best 
manual approach: up to 110x 
using 60 cores and 2 threads 
per core

● The relative performance of 
our approach compared with 
the best manual version is 
close to 1
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6. Conclusions & Future Work
● We extended the tasking model adding  support to task 

reductions

● The performance of our prototype is equivalent to a manual 
implementation using thread private storage which was our goal...

●  but improves code readability!

● Future work

● Write the formal specification of this proposal

● Extend the taskgroup construct to support the reduction clause 
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Evaluation: NQueens Local (2)
int nqueens(int row, int N, ...) {
  if(n == row) return 1;

  int num_threads =omp_get_num_threads();

  
  int p_res[num_threads]= {0};
  for(int i = 0; i < N; ++i) {
    if(check_attack(...)) {
      #pragma omp task shared(p_res) \
     final(...) mergeable 
      {
        int id = omp_get_thread_num();

        p_res[id] += nqueens(row+1, N);  
      }
    }   
  }
  #pragma omp taskwait
  int res = 0;
  for(int i = 0; i < N; ++i) {

res += p_res[i];
  }
  return res;
}

int nqueens(int row, int N, ...) {
  if(n == row) return 1;

  int num_threads = omp_in_final()
     ? 1: omp_get_num_threads();

  int p_res[num_threads]= {0};
  for(int i = 0; i < N; ++i) {
    if(check_attack(...)) {
      #pragma omp task shared(p_res) \
     final(...) mergeable 

 {
        int id = omp_in_final()
      ? 0 : omp_get_thread_num();
        p_res[id] += nqueens(row+1, N); 
       }
    }   
  }
  #pragma omp taskwait
  int res = 0;
  for(int i = 0; i < N; ++i) {

res += p_res[i];
  }
  return res;
}Manual version

Manual optimized version
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