
www.bsc.es

J. Ciesko, S. Mateo, X. Teruel, X. Martorell,  E. Ayguadé,
J. Labarta, A. Duran, B. De Supinski, S. Olivier,

K. Li,  A. Eichenberger

IWOMP - Aachen, Germany, October  1-2, 2015

Towards task-parallel reductions
in OpenMP



2

Outline

1. Introduction

2. Motivation

3. Related work

4. Contribution

5. Evaluation

6. Conclusions & Future Work



3

1. Introduction

var = op(var, expression)

● Defined as recurrent update over a variable by applying an 
associative and commutative operator

● Dot product

float res = 0.0f;
float v1[N], v2[N];
…
for (int i = 0; i < N; ++i)

res += v1[i] * v2[i];



4

1. Introduction

var = op(var, expression)

● Defined as recurrent update over a variable by applying an 
associative and commutative operator

● Dot product

float res = 0.0f;
float v1[N], v2[N];
…
#pragma omp parallel for reduction(+: res)
for (int i = 0; i < N; ++i)

res += v1[i] * v2[i];



5

1. Introduction

res

p_resNp_res2p_res1

...

#pragma omp parallel for reduction(+: res)

(implicit barrier)



6

1. Introduction

● Reduction over a linked list ● NQueens

int res = 0;
node_t* node = NULL;
…
while (node) {

res += node->value;
node = node->next;

}

int nqueens(int row, ...){
  if(row == lastRow)

return 1;

  int res = 0;
  for (int i=0; i<lastRow; ++i)
    if(check_attack(...))
        res += nqueens(...);
     
  return res;
}



7

1. Introduction

● Reduction over a linked list ● NQueens

int res = 0;
node_t* node = NULL;
…
while (node) {

res += node->value;
node = node->next;

}

int nqueens(int row, ...){
  if(row == lastRow)

return 1;

  int res = 0;
  #pragma omp parallel for \ 

  reduction(+: res)
  for (int i=0; i<lastRow; ++i)
    if(check_attack(...))
        res += nqueens(...);
     
  return res;
}

We cannot solve this problem 
directly with the actual OpenMP 
reduction support!

It works but It has some disadvantatges
● OMP_NESTED=1
● Cut-off



8

2. Motivation

● Tasks are useful for irregular algorithms...

● but they don't support reductions (yet)    :(

int res = 0;
node_t* node = NULL;
...
while (node) {

res += node->value;
node = node->next;

}

int res = 0;
node_t* node = NULL;
...
#pragma omp parallel
{
  #pragma omp single
  {
    while (node)
    {
     #pragma omp task ???
        res += node->value;
      
      node = node->next;
    }
  }
}



9

2. Motivation

● Reduction over a linked list using task dependences

int res = 0;
node_t* node = NULL;
...
#pragma omp parallel
{
  #pragma omp single
  {
    while (node)
    {
     #pragma omp task \
        firstprivate(node) shared(res) \
        depend(inout: res)
    
        res += node->value;
      
      node = node->next;
    }
  } // [1]
}

int res = 0;
node_t* node = NULL;
...
while (node) {
  res += node->value;
  node = node->next;
}

[1] all tasks have been executed



10

2. Motivation

● Reduction over a linked list using atomics

int res = 0;
node_t* node = NULL;
...
#pragma omp parallel
{
  #pragma omp single
  {
    while (node)
    {
     #pragma omp task \
        firstprivate(node) shared(res)
      {
        #pragma omp atomic
        res += node->value;
      }
      node = node->next;
    }
  } // [1]
}

int res = 0;
node_t* node = NULL;
...
while (node) {
  res += node->value;
  node = node->next;
}

[1] all tasks have been executed



11

2. Motivation: avoiding boilerplate codes

● Reduction over a linked list using threadprivate directive

int res = 0;
int part_res = 0;
#pragma omp threadprivate(part_res)
node_t* node = NULL;
...
#pragma omp parallel
{
  #pragma omp single
  {
    while (node) {
      #pragma omp task \  

firstprivate(node)
        part_res += node->value;
      
      node = node->next;
    }
  } // [1]

}

[1] all tasks have been executed. 
part_res thread private variables 
contain the partial results of the 
reduction

int res = 0;
node_t* node = NULL;
...
while (node) {
  res += node->value;
  node = node->next;
}



12

2. Motivation: avoiding boilerplate codes

● Reduction over a linked list using threadprivate directive

int res = 0;
int part_res = 0;
#pragma omp threadprivate(part_res)
node_t* node = NULL;
...
#pragma omp parallel reduction(+:res)
{
  #pragma omp single
  {
    while (node) {
      #pragma omp task \  

firstprivate(node)
        part_res += node->value;
      
      node = node->next;
    }
  } // [1]
  res += part_res;
} // [2]

int res = 0;
node_t* node = NULL;
...
while (node) {
  res += node->value;
  node = node->next;
}

[1] all tasks have been executed. 
part_res thread private variables 
contain the partial results of the 
reduction

[2] final reduction



13

2. Motivation: avoiding boilerplate codes

● Reduction over a linked list using additional storage

int res = 0;
int part_res[omp_get_max_threads()]={0};
node_t* node = NULL;
...
#pragma omp parallel reduction(+:res)
{
  #pragma omp single
  {
    while (node) {
      #pragma omp task \   

  firstprivate(node)
{
 int id = omp_get_thread_num(); 

        part_res[id] += node->value;
}

      node = node->next;
    }
  } // [1]
  res+=part_res[omp_get_thread_num()];
} // [2]

[1] all tasks have been executed. 
part_res contains the partial results 
of the reduction

[2] final reduction

int res = 0;
node_t* node = NULL;
...
while (node) {
  res += node->value;
  node = node->next;
}



14

3. Related Work

● Previous attempts (OpenMP Lang)

● Grant Haab & Federico Massaioli’s proposal

● Alex Duran’s  proposal

● IWOMP 2014

● Ciesko, J.,  Mateo, S., Teruel, X., Beltran, V.,  Martorell, X., Badia, R.M., 
Ayguadé, E., Labarta, J.: Task-Parallel Reductions in OpenMP and OmpSs

● General approach

– Reducing on task dependences, taskwait, barrier and at the end of a 
taskgroup

● Prototype implementation

● Evaluation comparing our implementation with manual atomic approach



15

3. Related Work: feedback

● The taskgroup construct defines the scope of the reduction

● The specification should allow several implementations

● Number of private copies

● Calls to the combiner

● Related issues

● Supporting untied tasks

● Nested taskgroup reductions



16

4. Contribution

● Extending taskgroup clauses to support reduction clause

● Syntax

● Semantics: defines the reduction scope

#pragma omp taskgroup reduction(red-id: list_items)
structured-block

#pragma omp task in_reduction(red-id: list_items)
structured-block

●  Extending task construct to support in_reduction clause

● Syntax

● Semantics: defines a task as a participant of a previously 
registered task reduction



17

4. Contribution: example

● Our proposal
int res = 0;
node_t* node = NULL;
...
#pragma omp parallel
{
  #pragma omp single
  {
    #pragma omp taskgroup reduction(+:res)
    { // [1]
      while (node)
      {
        #pragma omp task \

firstprivate(node) \
in_reduction(+:res) 

          res += node->value; // [2]
        node = node->next;
      }
    }// [3]
  }
}    

[1] registering a new reduction

[2] working with a private copy

[3] final reduction

int res = 0;
node_t* node = NULL;
...
while (node) {
  res += node->value;
  node = node->next;
}



18

4. Contribution: our implementation decisions
● We register a private copy for each implicit task (thread) at the 

beginning of the taskgroup construct

● Tasks that participate in a previously registered reduction just ask 
for the private storage of the thread that execute them

● Untied reduction tasks  are implemented as tied tasks

● Nested taskgroups performing a reduction over the same variable 
do not reuse the same private storage



Performance results



20

5. Evaluation
● We compare the performance of our prototype implementation 

against a manual reduction implementation  using threadprivate 
storage

● We tested our prototype in two environments:

● Intel Xeon processors

– GCC 4.7.2 as native compiler
● Intel Xeon Phi coprocessors

– Intel 15.0.2 as native compiler

● In both scenarios we used Mercurium source-to-source compiler v1.99.8 
and Nanos++ RTL v0.9a



21

5. Evaluation: benchmark descriptions

Array Sum: it computes the sum of N elements. We create a task for each 
TS elements

Dot Product: it computes the sum of the products of the components of two 
vectors of N elements. As before, we create a task for each TS elements

NQueens: it computes the number of configurations of placing N Queens in 
a N x N chessboard such that none of them is able to attack to any other. 
We use the final clause as a cut-off.
● Global version: we reduce over a global variable, so we only register one 

reduction for all the execution
● Local version: we reduce over a local variable. This means that we 

register a new reduction at each recursive level

UTS: this benchmark computes the number of nodes in a implicitly defined 
unbalanced tree



Results on Intel Xeon processors



23

5. Evaluation: Array Sum and dot product
A

rr
ay

 S
u

m
D

o
t 

p
ro

d
u

ct

● Similar scalability: up to 
10x using 16 threads

● The relative perfomance 
(manual perf. / prototype 
perf.) is close to 1

● Similar scalability: up to 6x 
using 16 threads
● not enough work
● NUMA

● The relative perfomance 
(manual perf. / prototype 
perf.) is close to 1



24

5. Evaluation: NQueens
N

q
u

ee
n

s 
g

lo
b

al
N

q
u

ee
n

s 
lo

ca
l

● Similar scalability: up to 
14x using 16 threads

● The relative perfomance 
(manual perf. / prototype 
perf.) is close to 1

● The scalability of our 
approach is better than the 
manual versions

● The  perfomance of our 
approach is 5% higher than 
the best manual version



25

5. Evaluation: UTS
S

ca
la

b
il

it
y

R
el

at
iv

e 
P

er
fo

m
an

ce

● Several executions: 50k, 
100k, 500k and 1000k

● not using  final clause

● Task granularity is fixed

● The scalability of all the 
versions is similar

● The relative performances are 
between 0.96-0.99

● The scenario with the worse 
performance is also the one 
that has the higher number of 
tasks



Results on Intel Xeon Phi coprocessors



27

5. Evaluation: Array Sum

● The scalability of our approach is 
better: up to 85x using 60 cores

● The performance of our 
approach is a bit better  than the 
performance of the manual 
version
● But it's not significant since the 

exeuction times are small

Important: we only show the results of the best configuration 
of threads per core

A
rr

ay
 S

u
m



28

5. Evaluation: NQueens
N

q
u

ee
n

s 
g

lo
b

al
N

q
u

ee
n

s 
lo

ca
l

● similar scalability: up to 
90x using 60 cores and 
two threads per core

● The relative performance 
is almost one in all the 
scenarios 

● similar scalability to the best 
manual approach: up to 110x 
using 60 cores and 2 threads 
per core

● The relative performance of 
our approach compared with 
the best manual version is 
close to 1



29

6. Conclusions & Future Work
● We extended the tasking model adding  support to task 

reductions

● The performance of our prototype is equivalent to a manual 
implementation using thread private storage which was our goal...

●  but improves code readability!

● Future work

● Write the formal specification of this proposal

● Extend the taskgroup construct to support the reduction clause 



www.bsc.es

Thank you!

sergi.mateo@bsc.es

30



www.bsc.es

BACKUP

31



32

Evaluation: NQueens Local (2)
int nqueens(int row, int N, ...) {
  if(n == row) return 1;

  int num_threads =omp_get_num_threads();

  
  int p_res[num_threads]= {0};
  for(int i = 0; i < N; ++i) {
    if(check_attack(...)) {
      #pragma omp task shared(p_res) \
     final(...) mergeable 
      {
        int id = omp_get_thread_num();

        p_res[id] += nqueens(row+1, N);  
      }
    }   
  }
  #pragma omp taskwait
  int res = 0;
  for(int i = 0; i < N; ++i) {

res += p_res[i];
  }
  return res;
}

int nqueens(int row, int N, ...) {
  if(n == row) return 1;

  int num_threads = omp_in_final()
     ? 1: omp_get_num_threads();

  int p_res[num_threads]= {0};
  for(int i = 0; i < N; ++i) {
    if(check_attack(...)) {
      #pragma omp task shared(p_res) \
     final(...) mergeable 

 {
        int id = omp_in_final()
      ? 0 : omp_get_thread_num();
        p_res[id] += nqueens(row+1, N); 
       }
    }   
  }
  #pragma omp taskwait
  int res = 0;
  for(int i = 0; i < N; ++i) {

res += p_res[i];
  }
  return res;
}Manual version

Manual optimized version


	Cover
	Contents
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	results on Intel Xeon processors
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

