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Introduction 

¤  Parallel programming is unavoidable in the era of the 
multicore 

¤  OpenMP simplifies shared memory parallel programming  
¤   More productivity  
¤  New classes of correctness and performance bugs 

¤   Scalability can be a challenge 
¤   Data locality 
¤   False sharing  

¤   Needs a deep understanding about program’s dynamic 
behavior  
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False sharing effect 

¤  False sharing: It occurs 
when threads on different 
processors modify variables 
that reside on the same 
cache line, as illustrated in 
the  figure 

¤  P i n g - P o n g e f f e c t o n 
cache-line (due to cache-
coherency protocol) 
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False sharing: program example 
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Execution time improvement 
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False sharing: program example 
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Detecting False Sharing in OpenMP Applications Using the DARWIN Framework. B. Wicaksono, 
M. Tolubaeva, Barbara Chapman, LCPC 2011. 

 



Detecting false sharing is hard 

¤  The program is functionally correct 
¤  Only running much slower than possible 

¤  Major class of bugs 

¤  There is no sharing at the program level 
¤  Two interfering variables that share a cache line are 

independent with no visible relationship 

¤  Program analysis will not find it 

¤  Happens due to interaction among core 
¤  Looking within a single core does not reveal the problem 
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Recent work 

¤  Detecting False Sharing in OpenMP Applications Using 
the DARWIN Framework. B.  Wicaksono, M.  Tolubaeva, 
Barbara Chapman, LCPC 2011. 

¤  Dynamic cache contention detection in multi-threaded 
applications. Qin Zhao, David Koh, Syed Raza, Derek 
Bruening, Weng-Fai Wong, VEE 2011. 

¤  SHERIFF: precise detection and automatic mitigation of 
false sharing. Tongping Liu Emery D. Berger, OOPSLA 2011.  

¤  Detection of false sharing using machine learning. Sanath 
Jayasena et al, SC13. 
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Our approach 
 

¤  We use machine learning to analyze hardware performance event 
data using OMPT API 

¤  We treat it as “Binary Classification Problem”: Given an OpenMP 
code and given number of threads, do we have a false sharing 
effect or not? 

¤  Basic idea: train a classifier with data from  OpenMP mini-programs 

¤  Separate classifiers for each number of threads   

¤  Develop a set of mini-programs, with two possible modes of 
execution  
¤  Good (no false sharing)  
¤  Bad (with false sharing)   
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Machine learning 

o  Machine Learning (ML) is constructing computer 
programs that develop solutions and improve with 
experience  

o  Solves problems which can not be solved by 
enumerative methods or calculus-based techniques 

o  Intuition is to model human way of solving some 
problems which require experience  

o  When the relationships between all system variables is 
completely understood ML is not needed 
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A generic machine learning  system   
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Feature selection for machine 
learning  

¤  The search space depends upon the number of input 
variables 

¤  Large number of features means complex search space 
and hard job for a machine learning model to converge or 
learn 

¤  We need to reduce the dimension of the search space in 
order to make  the learning easy and effective 

¤  Feature selection is a big research topic in statistical learning 

¤  We use OMPT API to collect the features for machine 
learning for false sharing 
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OMPT: OpenMP Tools Application 
Programming Interface ** 

¤  OMPT API is designed to allow performance tools to 
gather useful performance and debugging information 
from applications and to hide low-level OpenMP 
implementation from users.  

¤  OMPT API is based on experience with two prior efforts to 
define a standard OpenMP tools API: the POMP API and 
the Sun/Oracle Collector API 

¤  OMPT API is a minimal set of features to support tools that 
employ asynchronous sampling to measure application 
performance 

 

HPCTools Group, University  of Houston 

13 

**Detailed report on OMPT API available on www.openmp.org 



OMPT : OpenMP Tools Application 
Programming Interface  
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Currently, OpenUH and Intel OpenMP 
runtime libraries support OMPT API 
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OMPT: OpenMP Tools Application 
Programming Interface  

¤  The main goal behind the effort is to fill the gap for 
performance analysis for OpenMP programs 

¤  This will help understand the performance bottlenecks for 
OpenMP programs for the future complex hardware  

¤  The framework has the ability: 
¤  To build runtime adaptable approaches for OpenMP 

programs 

¤  To build cost models for various OpenMP performance 
challenges 
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Cost modeling using OMPT API 

¤  OMPT API  is used  by a 
performance tool to 
capture OpenMP events 

¤  Successive events give a 
user a window of 
opportunity to collect 
information 

¤  The information can give a 
pattern that can be used 
for cost modeling 
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Representation for cost modeling 
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Cost modeling using OMPT API 
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Information at fine level using 
OMPT API 



Feature vector representation for  
machine learning using OMPT API 
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Experimentation 

¤  OpenUH compiler framework 

¤  Processor: 2.4 GHz quad-core Intel 
Xeon E5-2665 

¤  Number of Sockets = 2 

¤  No. of Cores: 8 per Socket 

¤  Main Memory: 8GB per Socket 

¤  L1 64K, L2 256K, and cache line size is 
64 bytes 

¤  Built a tool to collect the information 
using OMPT APIs 
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Experimentation 
¤  Use the NAS parallel benchmarks to produce the 

training and testing instances 

¤  Use 40 OpenMP kernels for training and testing 

¤  Introduce the false sharing in the instances  with 
different number of threads 

¤  WEKA framework from the University of Waikato 

¤  Tried various learning algorithms including SVM, ANN, 
K-mean clustering, and decision tree 

¤  The decision tree approach gives the best 
performance in terms of accuracy 

¤  Producing data for training phase is the most 
expensive parts 
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Decision tree algorithm 

¤   Nodes of trees are 
attributes and  the leaves 
are classes 

¤  Use information gain 
statistical criterion to select 
the features 

¤  Use heuristic (C4.5) to 
establish relationship 
among the features 

¤  Features’ values are used 
to establish the relationship 

¤  Values can be discrete or 
continuous 
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Feature selection for false sharing 

¤  Collected hardware features using PAPI hardware 
counters 

¤  Use Mutual Information (MI) criterion to select the best 
features 

¤  The decision tree algorithm uses MI to order hardware 
features 

¤  Best result is given by the top 12 features 
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Accuracy of the classifier 

¤  12 features give the best 
solution 

¤   Increase in the number of 
features  doesn’t affect the 
accuracy of the classifier 

¤  The result is consistent with 
the previous work 
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Results and analysis 
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Efficiency of the classifiers using 10 cross 
validation approach using the training phase 



Results and analysis 
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Efficiency of the trained classifiers using 
unseen OpenMP kernels 



Future work 

¤  Improve the accuracy performance  

¤  Feature vector needs improvement 

¤  Validation using a real application 

¤  Combine this approach with  dynamic false sharing 
detecting approaches to lower its overhead 

¤  OMPT API for other  performance optimizations 

27 

HPCTools Group, University  of Houston 



Conclusions 

¤  False sharing can seriously degrade performance 

¤  We presented an effective and low over-head approach 
for detecting false sharing in OpenMP programs using 
OMPT API 

¤  Use NAS Parallel benchmarks to validate our approach 

¤  The accuracy of our approach is from 60 to 90%  

¤  OMPT API has the ability to built effective cost  models for 
OpenMP performance challenges 
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Thank you! 

¤ Questions! 
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