
False sharing detection for OpenMP
applications using OMPT API
Millad Ghani, Abid M. Malik, Barbara M. Chapman, and Ahmad
Qawasmeh

HPCTools Group, University of Houston, TX

Agenda

¤  Introduction to the problem

¤  Introduction to machine learning

¤  OMPT (OpenMP Tools) API

¤  Cost Modeling using OMPT API

¤  Experimentation and results

¤  Future work

¤  Conclusion

2

HPCTools Group, University of Houston

Introduction

¤  Parallel programming is unavoidable in the era of the
multicore

¤  OpenMP simplifies shared memory parallel programming
¤  More productivity
¤  New classes of correctness and performance bugs

¤  Scalability can be a challenge
¤  Data locality
¤  False sharing

¤  Needs a deep understanding about program’s dynamic
behavior

3

HPCTools Group, University of Houston

False sharing effect

¤  False sharing: It occurs
when threads on different
processors modify variables
that reside on the same
cache line, as illustrated in
the figure

¤  P i n g - P o n g e f f e c t o n
cache-line (due to cache-
coherency protocol)

4

HPCTools Group, University of Houston

False sharing: program example

5

Execution time improvement

HPCTools Group, University of Houston

False sharing: program example

6

0

2

4

6

8

Sp
ee

du
p

1-thread 2-threads
4-threads 8-threads

0

2

4

6

8

Sp
ee

du
p

1-thread 2-threads
4-threads 8-threads

Original Version Optimized Version

HPCTools Group, University of Houston

Detecting False Sharing in OpenMP Applications Using the DARWIN Framework. B. Wicaksono,
M. Tolubaeva, Barbara Chapman, LCPC 2011.

Detecting false sharing is hard

¤  The program is functionally correct
¤  Only running much slower than possible

¤  Major class of bugs

¤  There is no sharing at the program level
¤  Two interfering variables that share a cache line are

independent with no visible relationship

¤  Program analysis will not find it

¤  Happens due to interaction among core
¤  Looking within a single core does not reveal the problem

7

HPCTools Group, University of Houston

Recent work

¤  Detecting False Sharing in OpenMP Applications Using
the DARWIN Framework. B. Wicaksono, M. Tolubaeva,
Barbara Chapman, LCPC 2011.

¤  Dynamic cache contention detection in multi-threaded
applications. Qin Zhao, David Koh, Syed Raza, Derek
Bruening, Weng-Fai Wong, VEE 2011.

¤  SHERIFF: precise detection and automatic mitigation of
false sharing. Tongping Liu Emery D. Berger, OOPSLA 2011.

¤  Detection of false sharing using machine learning. Sanath
Jayasena et al, SC13.

8

HPCTools Group, University of Houston

Our approach

¤  We use machine learning to analyze hardware performance event
data using OMPT API

¤  We treat it as “Binary Classification Problem”: Given an OpenMP
code and given number of threads, do we have a false sharing
effect or not?

¤  Basic idea: train a classifier with data from OpenMP mini-programs

¤  Separate classifiers for each number of threads

¤  Develop a set of mini-programs, with two possible modes of
execution
¤  Good (no false sharing)
¤  Bad (with false sharing)

9

HPCTools Group, University of Houston

Machine learning

o  Machine Learning (ML) is constructing computer
programs that develop solutions and improve with
experience

o  Solves problems which can not be solved by
enumerative methods or calculus-based techniques

o  Intuition is to model human way of solving some
problems which require experience

o  When the relationships between all system variables is
completely understood ML is not needed

10

HPCTools Group, University of Houston

A generic machine learning system

11

System

…

…

1x
2x

Nx

1y
2y

My1 2, ,..., Kh h h

()1 2, ,..., Nx x x=x
()1 2, ,..., Kh h h=h
()1 2, ,..., Ky y y=y

Input Variables:

Hidden Variables:
Output Variables:

HPCTools Group, University of Houston

Feature selection for machine
learning

¤  The search space depends upon the number of input
variables

¤  Large number of features means complex search space
and hard job for a machine learning model to converge or
learn

¤  We need to reduce the dimension of the search space in
order to make the learning easy and effective

¤  Feature selection is a big research topic in statistical learning

¤  We use OMPT API to collect the features for machine
learning for false sharing

HPCTools Group, University of Houston

12

OMPT: OpenMP Tools Application
Programming Interface **

¤  OMPT API is designed to allow performance tools to
gather useful performance and debugging information
from applications and to hide low-level OpenMP
implementation from users.

¤  OMPT API is based on experience with two prior efforts to
define a standard OpenMP tools API: the POMP API and
the Sun/Oracle Collector API

¤  OMPT API is a minimal set of features to support tools that
employ asynchronous sampling to measure application
performance

HPCTools Group, University of Houston

13

**Detailed report on OMPT API available on www.openmp.org

OMPT : OpenMP Tools Application
Programming Interface

OpenMP Program
(object code) OMPT API

Performance Tool

executable (./
a.out)

re
q

u
e

st

e
ve

n
ts

Currently, OpenUH and Intel OpenMP
runtime libraries support OMPT API

HPCTools Group, University of Houston

14

OMPT: OpenMP Tools Application
Programming Interface

¤  The main goal behind the effort is to fill the gap for
performance analysis for OpenMP programs

¤  This will help understand the performance bottlenecks for
OpenMP programs for the future complex hardware

¤  The framework has the ability:
¤  To build runtime adaptable approaches for OpenMP

programs

¤  To build cost models for various OpenMP performance
challenges

HPCTools Group, University of Houston

15

Cost modeling using OMPT API

¤  OMPT API is used by a
performance tool to
capture OpenMP events

¤  Successive events give a
user a window of
opportunity to collect
information

¤  The information can give a
pattern that can be used
for cost modeling

HPCTools Group, University of Houston

16

Representation for cost modeling

17

HPCTools Group, University of Houston

Anilkumar Nandamuri, Abid M. Malik, Ahmad Qawasmeh and Barbara M. Chapman. "Power and Energy Footprint
of OpenMP programs using OpenMP Runtime API". In 2nd International Workshop on Energy Efficient Super
Computing (E2SC) held in conjunction with SC14, November, 2014, New Orleans, Louisiana, USA

Cost modeling using OMPT API

HPCTools Group, University of Houston

18

K1 K2

Information at coarse level

Information at fine level using
OMPT API

Feature vector representation for
machine learning using OMPT API

HPCTools Group, University of Houston

19

VAB ={f1, f2, f3, …, fm}

VBC

VCD

VDE

VEF

Vfinal

={f1, f2, f3, …, fm}

={f1, f2, f3, …, fm}

={f1, f2, f3, …, fm}

={f1, f2, f3, …, fm}

={VAB, VBC, VCD, VDE, VEF, CLASS }

Experimentation

¤  OpenUH compiler framework

¤  Processor: 2.4 GHz quad-core Intel
Xeon E5-2665

¤  Number of Sockets = 2

¤  No. of Cores: 8 per Socket

¤  Main Memory: 8GB per Socket

¤  L1 64K, L2 256K, and cache line size is
64 bytes

¤  Built a tool to collect the information
using OMPT APIs

20

HPCTools Group, University of Houston

Experimentation
¤  Use the NAS parallel benchmarks to produce the

training and testing instances

¤  Use 40 OpenMP kernels for training and testing

¤  Introduce the false sharing in the instances with
different number of threads

¤  WEKA framework from the University of Waikato

¤  Tried various learning algorithms including SVM, ANN,
K-mean clustering, and decision tree

¤  The decision tree approach gives the best
performance in terms of accuracy

¤  Producing data for training phase is the most
expensive parts

HPCTools Group, University of Houston

21

Decision tree algorithm

¤  Nodes of trees are
attributes and the leaves
are classes

¤  Use information gain
statistical criterion to select
the features

¤  Use heuristic (C4.5) to
establish relationship
among the features

¤  Features’ values are used
to establish the relationship

¤  Values can be discrete or
continuous

22

HPCTools Group, University of Houston

Machine Learning by Tom Mitchell

Feature selection for false sharing

¤  Collected hardware features using PAPI hardware
counters

¤  Use Mutual Information (MI) criterion to select the best
features

¤  The decision tree algorithm uses MI to order hardware
features

¤  Best result is given by the top 12 features

HPCTools Group, University of Houston

23

Accuracy of the classifier

¤  12 features give the best
solution

¤  Increase in the number of
features doesn’t affect the
accuracy of the classifier

¤  The result is consistent with
the previous work

HPCTools Group, University of Houston

24

Results and analysis

25

HPCTools Group, University of Houston

Efficiency of the classifiers using 10 cross
validation approach using the training phase

Results and analysis

26

HPCTools Group, University of Houston

Efficiency of the trained classifiers using
unseen OpenMP kernels

Future work

¤  Improve the accuracy performance

¤  Feature vector needs improvement

¤  Validation using a real application

¤  Combine this approach with dynamic false sharing
detecting approaches to lower its overhead

¤  OMPT API for other performance optimizations

27

HPCTools Group, University of Houston

Conclusions

¤  False sharing can seriously degrade performance

¤  We presented an effective and low over-head approach
for detecting false sharing in OpenMP programs using
OMPT API

¤  Use NAS Parallel benchmarks to validate our approach

¤  The accuracy of our approach is from 60 to 90%

¤  OMPT API has the ability to built effective cost models for
OpenMP performance challenges

28

HPCTools Group, University of Houston

Acknowledgement

¤  This work is supported by the National Science
Foundation under grant CCF-1148052

HPCTools Group, University of Houston

29

Thank you!

¤ Questions!

30

HPCTools Group, University of Houston

HPCTools Group, University of Houston

31

