
Composing Low-Overhead Scheduling Strategies for
Improving Performance of Scientific Applications on

Clusters of SMPs

Vivek Kale1

1Department of Computer Science
University of Illinois at Urbana-Champaign

October 1, 2015

Low-overhead Scheduling for MPI Programs October 1, 2015 1 / 21

Sample MPI Code

Common pattern in application codes, e.g., in ones we’ll see later.
for(ts = 0; ts < 1000; ts ++) // 1000 timesteps

{
MPI_Irecv (leftGhost ,gSz , MPI_DOUBLE ,id -1 ,.. ,& requests [numRequests ++]);
MPI_Irecv (rightGhost ,gSz , MPI_DOUBLE ,id+1, ... , & requests [numRequests ++]);
MPI_Isend (leftBoundary ,bSz , MPI_DOUBLE ,id -1, ... , & requests [numRequests ++]);
MPI_Isend (rightBoundary ,bSz , MPI_DOUBLE , id +1 ,... , & requests [numRequests ++]);
MPI_Waitall (numRequests ,requests , MPI_STATUSES_IGNORE);
for(i = 0; i < n; i++) w[i] = (u[i -1] + u[i+1] + u[i]) /3.0;
temp = w;
w = u;
u = temp;

}

Assuming this code is perfectly load balanced, should be no performance
problems.

Low-overhead Scheduling for MPI Programs October 1, 2015 1 / 21

Transient Load Imbalance and its Mitigation

Infrequent noise → slowdown at scale. Idea for fix: redistribute within node.

(a) Noise delays almost every iteration. (b) Performance improves, assuming perfect

work re-distribution within each node.

Figure 1: Application timeline schematics.

Low-overhead Scheduling for MPI Programs October 1, 2015 2 / 21

Within-node Persistent Load Imbalance and Mitigation

(a) Application imbalances. (b) Mitigated by within-node re-distribution.

Indent due to not doing across-node balancing, but still much better than before.

Low-overhead Scheduling for MPI Programs October 1, 2015 3 / 21

→ Can Dynamic Load Balancing Fix This?

Dynamic load balancing within a node has potential to mitigate imbalances,
if it can be done efficiently.

Persistent imbalance can also be addressed by across-node load
balancing (available in Charm++, Zoltan), but it requires more
complex machinery (and is complementary anyway).

OpenMP supports dynamic balancing.
Use OpenMP within-node.

Low-overhead Scheduling for MPI Programs October 1, 2015 4 / 21

Execution Timings Breakdown

static dynamic guided
Strategy

0

50

100

150

200

T
im

e
 (

s)

NASLU : cab
comp dm dq idle

static dynamic guided
Strategy

0

5

10

15

20

25

30

35

T
im

e
 (

s)

Barnes-Hut : cab
comp dm dq idle

Figure 2: Breakdown of time. Computation in red, idle in blue, synchronization in green.

Idle time eliminated with dynamic.
Synchronization overheads for dynamic: small, although significant (≈ 5%).
Most of the overhead (shown in yellow) must be data movement, i.e., cache
performance, locality.

Low-overhead Scheduling for MPI Programs October 1, 2015 5 / 21

Objective

Objective: Design a set of new scheduling strategies that handles all three
causes of the problem, i.e., thread idle time, data movement, and
synchronization overhead simultaneously for many applications and
platforms, in the context of bulk-synchronous and loosely synchronous
MPI applications.

.

Key Idea of Solution: Intelligently combine the static and dynamic
scheduling schemes to handle these three problems.

Low-overhead Scheduling for MPI Programs October 1, 2015 6 / 21

Objective

Objective: Design a set of new scheduling strategies that handles all three
causes of the problem, i.e., thread idle time, data movement, and
synchronization overhead simultaneously for many applications and
platforms, in the context of bulk-synchronous and loosely synchronous
MPI applications.
.

Key Idea of Solution: Intelligently combine the static and dynamic
scheduling schemes to handle these three problems.

Low-overhead Scheduling for MPI Programs October 1, 2015 6 / 21

Hybrid Static/Dynamic Scheduling
pragma omp parallel for schedule (static)

for(int i=0; i<n; i++)
c[i] += a[i]*b[i];

Slack MPI

1
2
3
4

Threads

Tp

Susceptible to imbalance.

pragma omp parallel
{
pragma omp for schedule (dynamic)

for (int i=0; i<n; i++)
c[i] += a[i]*b[i];

}

1
2
3
4

Time

1
2
3
4

Noise

D
elay

Slack

Threads
Threads

MPI

MPI

Am
plification

t1
q

S

Scheduler overhead stretches time.
double fs = get_env_var (STATIC_FRACTION);
pragma omp parallel nowait
{
pragma omp for

for (int i = 0; i < fs*n; i++)
c[i] += a[i]*b[i];

}

pragma omp parallel
{
pragma omp for schedule (dynamic)

for (int i = fs*n; i < n; i++)
c[i] += a[i]*b[i];

}

1
2
3
4

1
2
3
4

Time

Slack

Noise

Threads
Threads

MPI

MPI

Am
plification

t1q
(1 � fd) · Tp S

Can reduce imbalance and sched ovhd. simultaneously.

Low-overhead Scheduling for MPI Programs October 1, 2015 7 / 21

Performance with Tuned Static Fraction

 static dynamic guided besf
Strategy

0

50

100

150

200

T
im

e
 (

s)

NASLU : cab
comp dm dq idle

 static dynamic guided besf
Strategy

0

5

10

15

20

25

30

35

T
im

e
 (

s)

Barnes-Hut : cab
comp dm dq idle

In besf, we use the best static fraction. See rightmost bar.

1 Balances the tradeoff between load balance and locality across applications
and platforms.

2 Even for NASLU, the besf gives performance gains over static, i.e., it
benefits from the small amount of dynamic load balancing.

3 EuroMPI 2010 : V. Kale and W. Gropp [statdyn] studies this idea in more
depth.

Low-overhead Scheduling for MPI Programs October 1, 2015 8 / 21

Problems with the Basic Hybrid Scheduling Approach and
Solutions

1 Search space for tuning the scheduler is large and complex.
2 Spatial locality in dynamic iterations disturbed, and not as good as

static scheduling.
3 Previous work solved these problems.

Low-overhead Scheduling for MPI Programs October 1, 2015 9 / 21

Broader Problem

Application and platform have many different mentioned factors
involved, esp. as we go to exascale.
Different circumstances require different scheduling tecniques.
Our infrastructure and techniques make it efficient and easy to
combine the desired scheduling strategies.
We see if we can compose schedulers to handle all factors and
circumstances.

Low-overhead Scheduling for MPI Programs October 1, 2015 10 / 21

Components of Example Composed Scheduler

hybSched: hybrid static/dynamic scheduling with static fraction exposed to
user.
uSched: Use model-guided optimization to determine the static fraction,
and then experimentally tune around this static fraction.
slackSched: Adds awareness of slack to uSched created by MPI’s collective
operations.
vSched: Enhance spatial locality of uSched by making it likely that each
thread will execute spatially contiguous dynamic iterations, i.e., stagger the
dynamic iterations.
comboSched: Start with the staggered static/dynamic scheduling scheme
defined in vSched above, and then do the slack-conscious adjustment
described in slack-conscious scheduling section.

Low-overhead Scheduling for MPI Programs October 1, 2015 11 / 21

Original Code

include "mpi.h"
include <omp.h>
int main(int argc , char * argv [])
{

// ...
MPI_Init (& argc ,& argv);
// ...
while (timestep < 1000) {

pragma omp parallel for
for(int i=0; i<n; i++)

c[i] += a[i]*b[i];
MPI_Allreduce (&sum ,& global_sum ,1, MPI_DOUBLE ,MPI_SUM , MPI_COMM_WORLD);
timestep ++;

}
MPI_Finalize ();

}

Figure 3: Original MPI+OpenMP code.

Low-overhead Scheduling for MPI Programs October 1, 2015 12 / 21

Code Transformation

include <mpi.h>
include <omp.h>
include " vSched .h"
int main(int argc , char * argv []){

int tid , numThrds , start , end = 0; double fd , fs;
static LoopTimeRecord * record = NULL;
MPI_Init (& argc , &argv); // ..
vSched_init (numThrds); // ..
while (timestep < 1000) {

fd = predict_dynamic_fraction (& record); fs = 1.0 - fd;
pragma omp parallel

{
tid = omp_get_thread_num (); numThrds = omp_get_num_threads ();
FORALL_BEGIN (sds ,tid ,numThrds ,0,n,start ,end ,fs)

for(int i= start ;i<end;i++)
c[i] += a[i]*b[i];

FORALL_END (sds ,tid ,start ,end)
}

end_timing (& record , n);
MPI_Allreduce (&sum ,& global_sum ,1, MPI_DOUBLE ,MPI_SUM , MPI_COMM_WORLD);
timestep ++;

}
endLoop (&lr , (int) (n*fd));
vSched_finalize (numThrds);
MPI_Finalize ();

}

Figure 4: Code transformed to use composed scheduling strategy.

Low-overhead Scheduling for MPI Programs October 1, 2015 13 / 21

Setup

SNAP: Regular mesh computation, implementation done in MPI+OpenMP,
used for heat diffusion simulation.
miniFE: Finite element unstructured mesh computation, implementation
done in MPI+OpenMP, used for earthquake simulation.
Rebound: N-body computation, implemented done in MPI+OpenMP, used
for bio-molecular interaction simulation.

Experimental Setup: Intel Xeon 16-core processor with Fat-tree
interconnect. Ran with 1 MPI process per node, and 1 thread per core (16
threads per node).

Low-overhead Scheduling for MPI Programs October 1, 2015 14 / 21

Scheduling Strategy Composition Results for Rebound

1 2 4 8 16 32 64 128 256 512 1024
Nodes

0

10

20

30

40

50

60

P
e
rc

e
n
t

Im
p
ro

v
e
m

e
n
t

OMP-Dynamic OMP-Guided uSched slackSched vSched comboSched

Figure 5: Percent speedup over OpenMP static scheduling for each scheduling strategy for the particle simulation code.

Combining different techniques seems to add on benefits, i.e., they don’t
cancel benefit out.
Reason: strategies based on complementary factors. Spatial locality in the
vSched vs. reducing dynamic scheduling in slackSched.
Small code change: 41,421 loc to 41,982 loc.

Low-overhead Scheduling for MPI Programs October 1, 2015 15 / 21

Scheduling Strategy Results for SNAP
CORAL MPI+OpenMP SNAP heat diffusion code performing regular mesh sweep.

1 2 4 8 16 32 64 128 256 512 1024
Nodes

30

20

10

0

10

20

30
P
e
rc

e
n
t

Im
p
ro

v
e
m

e
n
t

OMP-Dynamic OMP-Guided uSched slackSched vSched comboSched

Figure 6: Percent speedup over OpenMP static scheduling for different loop scheduling strategies.

Even when dynamic strategies worsen performance, the combined strategies
show a small benefit.
Optimizations in composition don’t cancel each other out; combo sched gets
7.2% gains over uSched.

Low-overhead Scheduling for MPI Programs October 1, 2015 16 / 21

Related Work

Locality aware scheduling by Chapman, deSupinski.
Example of a history-based scheduling strategy by Zhang and Voss.
Work stealing by Leiserson and group at MIT.

Low-overhead Scheduling for MPI Programs October 1, 2015 17 / 21

Conclusions

1 Need low-overhead scheduling strategies for improving performance of
scientific applications.

2 Many different factors when running an application on a particular
architecture. These require multiple low-overhead scheduling strategies to be
used at once.

3 Results show that composition is additive in performance.
4 Future work: (a) Integration with OpenMP or other shared memory model;

(b) composition with other scheduling strategies (which includes generalized
methodology for composition for future scheduling strategies).

Low-overhead Scheduling for MPI Programs October 1, 2015 18 / 21

Current Work with GPUs

Working with scientists in physics and mechanical sciences to
integrate my techniques in a real-world CFD application.
Apply work in the context of heterogeneous architectures.
Use loop scheduling ideas on MIC.

Low-overhead Scheduling for MPI Programs October 1, 2015 19 / 21

Acknowledgements

Todd Gamblin: Software
Franck Cappello: Noise modeling based on fault-tolerance models
Torsten Hoefler: amplification and slack description
Laura Grigori: CALU scheduling
Micheal T. Heath: Suggestions on theoretical analysis and
formalization of performance models.

Low-overhead Scheduling for MPI Programs October 1, 2015 20 / 21

Thanks!

