
Exception Handling with OpenMP 
in Object-Oriented Languages

Xing Fan, Mostafa Mehrabi, Oliver Sinnen, Nasser Giacaman

Department of Electrical and Computer Engineering

The University of Auckland

Auckland, New Zealand 



Background

• Using OpenMP in high-performance multi-core servers. 



Motivation

• Using OpenMP in a wider range of multi-core devices. 

Time

Scientific
batch-like

User-friendly
Interactive

Visible
GUI

Smart
Everywhere

Responsive
Smooth



Motivation

• Using OpenMP in high-level languages. 

Procedural languages Object-oriented languages

C, Fortran, Pascal C++, C#, Java

Low-level semantic abstraction
• Primitive operations
• Function/procedure
• No special error recovery support
• Integer based for-loop

High-level semantic abstraction
• Polymorphism
• Operator overloading
• Exception handling 
• For-each iteration

Low-level data abstraction
• Primitive data types
• Structures/Unions

High-level data abstraction
• User-defined data type/class
• Inheritance

Standard OpenMP Extended OpenMP (Pyjama)



Motivation

• Using OpenMP in high-level languages. 

Procedural languages Object-oriented languages

C, Fortran, Pascal C++, C#, Java

Low-level semantic abstraction
• Primitive operations
• Function/procedure
• No special error recovery support
• Integer based for-loop

High-level semantic abstraction
• Polymorphism
• Operator overloading
• Exception handling 
• For-each iteration

Low-level data abstraction
• Primitive data types
• Structures/Unions

High-level data abstraction
• User-defined data type/class
• Inheritance

Standard OpenMP Extended OpenMP (Pyjama)



Pyjama

• An OpenMP implementation for Java.

• Aim for an easier parallelisation for Java programs, 
especially for Java interactive applications.

• Can be used for Android apps development.

• Concerns for software developing principles: programming 
productivity, usability, robustness, etc.



Why exception handling is important in OO?

• Language-level semantic support for error recovery, 
providing clean and self-evident control flow.

• A high level abstraction of errors. An exception object is 
able to contain rich information about an error.

• Conform with software engineering principles- Being  
friendly to encapsulation, inheritance, polymorphism, etc.



Sequential exception handling

try { 

for (int i=0; i<fileNames.size(); i++) { 
Image img = load(fileNamses[i]);
Set<KeyPoint> kp = extract(img);
kps.union(kp);

}
} catch(Exception e){ 

//handle other exception 
}

try

catch



Parallel exception handling

try { 
#pragma omp parallel for
for (int i=0; i<fileNames.size(); i++) { 

Image img = load(fileNamses[i]);
Set<KeyPoint> kp = extract(img);
kps.union(kp);

}
} catch(Exception e){ 

//handle other exception 
}

try

catch

？



try { 
#pragma omp parallel 
{ 

may_cause_exception(); 
}

} catch(Exception e){ 
//handling exception 

}

Parallel exception handling

Global exception 
handling- we can’t



#pragma omp parallel
{ 

try { 
phase1_may_cause_exception(); 

phase2(); 
} catch(Exception e) {
//handling exception 

} 
}

Parallel exception handling

Local exception 
handling- Yes we can



#pragma omp parallel
{ 

try { 
phase1_may_cause_exception(); 

#pragma omp barrier
phase2(); 

} catch(Exception e) {
//handling exception 

} 
}

Parallel exception handling

Local exception 
handling- Yes we can

Wait- May cause 
dead lock!



try { 
#pragma omp parallel for 
for (int i=0; i<4; i++){ 

may_cause_exception(); 
}

} catch(Exception e){ 
//handling exception 

}

#pragma omp parallel
{ 

try { 
phase1_may_cause_exception(); 

#pragma omp barrier
phase2(); 

} catch(Exception e) {
//handling exception 

} 
}

Syntactically conforms 
with OpenMP specification, 
but semantically it has a 

defect

Try-catch mechanism that 
does not syntactically and 
semantically conform with 
the OpenMP specification

Parallel exception handling -Problems



Definitions

• Local exception handling: An exception happened 
inside the parallel region, then it is handled by the 
same thread which threw the exception within the 
parallel thread group. 

• Global exception handling: An uncaught exception 
escapes from the parallel region, which could 
influence the entire parallel processing. Handling this 
type of exception is called global exception handling.



Stronger exception handling support

#pragma omp parallel 
{

try {
exception_happens();

} catch(Exception e){ 
//handling local exception 

}
#pragma omp barrier
stage2();

}

Local 
handling

Conform with current 
standard.(Global 

exception handling 
will never happen)



Stronger exception handling support

try { 
#pragma omp parallel 
{

try {
exception_happens();

} catch(Exception e){ 
//handling local exception

#pragma omp cancel parallel local
}
#pragma omp barrier
stage2();

}
} catch(Exception e){ 

//handling global exception 
}

Local 
handling

Boosted thread control: 
Enable one thread cancel 
locally without entire 
parallel processing 

stopping.



Stronger exception handling support

try { 
#pragma omp parallel 
{

exception_happens();
#pragma omp barrier
stage2();

}
} catch(Exception e){ 

//handling exception 
}

cancel

Boosted semantic: Global handling.
Boosted runtime: Uncaught exception 
inside parallel region stops the 

entire parallel processing.



Stronger exception handling support

try { 
#pragma omp parallel 
{

try {
exception_happens();
#pragma omp barrier
stage2();

} catch(Exception e){ 
//handling local exception

}
} catch(Exception e){ 

//handling global exception 
}

Boosted compilation 
checking: The code which 
contains potential defect 

will trigger the compiler’s 
warning.



Extended cancellation directive

#pragma omp cancel
\construct-type-clause thread-affiliate-clause [if-clause] 

Where construct-type-clause is one of the following: 
parallel, sections, for, taskgroup

and thread-affiliate-clause is one of the following:
global, local 

and if-clause is: if(scalar-expression)



parallel local parallel global for/section local for/section global

Cancellation triggering point

Cancellation checking point



What is boosted?

• A compilation stage semantic checking, warning 
programmers if a local exception handling could 
cause extra synchronization problems.

• Stop the parallel processing when an uncaught local 
exception is escaped from the parallel region, in 
default.

• Extended directives for flexible thread 
stopping/resuming, for various purposes of 
programming logic.



Overhead is negligible

Using original runtime as the baseline, we compare the 
overhead of exception handling boosted runtime, and find the 
boosted OpenMP runtime does not show a noticeable 
overhead compared with non-modified one.



Concluding remarks

• OpenMP will embrace a wider range of parallel applications, 
running on various multi-core devices.

• A coexist of OpenMP semantics and other high-level language 
abstraction concepts requires further explorations.

• From the software engineering point of view, robustness, 
usability, maintainability etc. could be more important than the 
executing performance of some programs.

• We are eager for a better speedup, but it is not always the 
whole story. 




