
Challenges for Parallel Programming
Models and Languages of post-
petascale and exascale computing
Post-K and post-T2K project

Exascale supercomputer project
RIKEN Advance Institute of Computational Science (AICS)

Team Leader of Architecture Development Team

2015/Oct/1st

Mitsuhisa Sato

 Background: Japanese supercomputing infrastructure, HPCI
 Post-T2K project: a collaboration with U. Tokyo and U. Tsukuba.

 FLAGSHIP 2020 project
 to develop the next Japanese flagship computer system, “post-K”
 “co-design” effort to design the system

 Challenges for Parallel Programming Models and Languages for
post-petascale and exascale computing

Outline

2

AICS and Supercomputer Centers in Japanese
Universities

Kyushu Univ.：
PC Cluster (55Tflops, 18.8TB)
SR16000 L2 (25.3Tflops, 5.5TB)
PC Cluster (18.4Tflops, 3TB)

Hokkaido Univ.：
SR11000/K1(5.4Tflops, 5TB)
PC Cluster (0.5Tflops, 0.64TB)

Nagoya Univ.：
FX1(30.72Tflops, 24TB)
HX600(25.6Tflops, 10TB)
M9000(3.84Tflops, 3TB)

Osaka Univ.：
SX-9 (16Tflops, 10TB)
SX-8R (5.3Tflops, 3.3TB)
PCCluster (23.3Tflops, 2.9TB)

Kyoto Univ.
T2K Open Supercomputer
(61.2 Tflops, 13 TB)

Tohoku Univ.：
NEC SX-9(29.4Tflops, 18TB)
NEC Express5800 (1.74Tflops,
3TB)

Univ. of Tsukuba：
T2K Open Supercomputer
95.4Tflops, 20TB

Univ. of Tokyo：
T2K Open Supercomputer
(140 Tflops, 31.25TB)

AICS, RIKEN：
K computer (10 Pfflops, 4PB)
Available in 2012

A 1 Pflops machine without accelerator will be
installed by the end of 2011

Tokyo Institute of Technology：
Tsubame 2
(2.4 Pflops, 100TB)

3

Supercomputers in Japan

FLAGSHIP
Machine

K Computer

1

10
PF

Riken

9 Universities
and National Laboratories

HPCI (High Performance Computing Infrastructure)
is formed from those machines, called leading
machines

Features: Single sign-on
Shared storage (Distributed file system)

As of Jun 2012

 Each supercomputer center has
one, two or more
supercomputers.

 Each supercomputer center
replaces their machines every 4.5
to 6 years.

4

Supercomputer Centers operated
at Japanese Universities and Plan/schedule

Fiscal Year 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Hokkaido

Tohoku

Tsukuba

Tokyo

Tokyo Tech.

Nagoya

Kyoto

Osaka

Kyushu

T2K Todai (140 TF)

50+ PF (FAC) 3MW

100+ PF
(UCC + TPC) 4MW

Post T2K -- 30 PF
(UCC + TPF) 4MW

(Manycore system) (700+ TF)
HA-PACS (800 TF)

NEC SX-9 + Exp5800
(31TF)

50-100 Pflops
(FAC + UCC)

Fujitsu FX10 (90.8TF, 31.8 TB/s), CX400(470.6TF, 55
TB/s)

Fujitsu FX10 (1PFlops, 150TiB, 408 TB/s),
Hitachi SR16000/M1 (54.9 TF, 10.9 TiB, 5.376
TB/s)

Fujitsu M9000(3.8TF, 1TB/s)
HX600(25.6TF, 6.6TB/s)
FX1(30.7TF, 30 TB/s) Upgrade (3.6PF) 3MW

-50 PF (TPF) 2MW

100～200 PF
(FAC/TPF + UCC)4MW

Hitachi SR16000/M1 (172 TF, 22TB)
Cloud System Hitachi BS2000 (44TF, 14TB)

10+ PF
(CFL-M/TPF + UCC) 1.5 MW

100 PF 2 MW
(CFL-

M/TPF+UCC)

~1PF ,~1PB/s(CFL-M) ~2MW 30+PF, 30+PB/s (CFL-D) ~5.5MW(max)

Tsubame 3.0 (20~30 PF, 2~6PB/s)
1.8MW (Max 3MW)

Tsubame 4.0 (100~200 PF,
20~40PB/s), 2.3~1.8MW (Max 3MW)

Tsubame 2.5 (5.7 PF,
110+ TB, 1160 TB/s),
1.8MW

Tsubame 2.0 (2.4PF,
97TB, 744 TB/s)1.8MW

Cray XC30
(400TF)600TF

6-10 PF
(FAC/TPF + UCC) 1.8 MW

100+ PF
(FAC/TPF + UCC) 1.8-2.4 MW

Cray XE6 (300TF,
92.6TB/s),
GreenBlade 8000
(243TF, 61.5 TB/s)

SX-8 + SX-9 (21.7 TF, 3.3
TB, 50.4 TB/s) 500+ TB/s (CFL-M) 1.2 MW 5+ PB/s (TPF) 1.8 MW
Hitachi
SR1600(25TF
)
Fujitsu FX10（270TF)+FX10相当(180TF),
CX400/GPGPU (766TF, 183 TB)

5-10 PF (FAC)Hitachi HA8000tc/ Xeon Phi (712TF, 242
TB) , SR16000(8.2TF, 6 TB)

100-150 PF
(FAC/TPF + UCC)

10-20 PF
(UCC + TPF)

3MW2.6MW2.0MW

5

JCAHPC and Post-T2K project
 The post T2K project, a project following T2K Open-supercomputer Alliance,

is aiming to build and install a large-scale manycore cluster system to
provide services for computational science researchers in Japan (not limited
to Japan).

 This is a joint effort by Univ. Tokyo and Univ. Tsukuba, in collaboration with
Kyoto Univ.

 The two universities agreed
to established a virtual
organization, Joint-Center for
Advanced High Performance
Computing (JCAHPC) to
develop and procure,
run the system.

6

2015/03/09

 Design of large-scale HPC system by adopting advanced and timely
(commodity) technologies.
 "Co-design" of the system with apps.
 A key point of "development" of modern HPC system is using advanced

commodities and configuring them in "optimal" way.
 Manycore processor is a "hot" and "advanced" commodity for building high performance

systems.
 ⇒ to produce a draft of Specification of the system for the procurement.

 As a co-design effort, research and development several software incl.
OS, programing lang., math libs are being carried out.
 Operating system for manycore - McKernel
 Programing lang. for manycore - XcalableMP
 Others, ... and developed software are to be deployed in the system.

 Collaboration with other universities (incl. U. Kyoto) and PC Cluster
Consortium, Japan.

Mission ① Research and Development
of large-scale HPC system

8

2015/03/09

Items for co-design

 constraints
 budget, power (<4MW), space

 node processor
 commodity
 choice of architecture (#core,

manycore)
 memory size
 ...

 Network
 Network topology (e.g. IB for Fat-

tree)
 hierarchical structure for

partitioning
 Storage

 Global storage / local storage
 How to access from node, staging

data ...
9

2015/03/09

 What are benchmark programs.
How to benchmark.

 Programing model
 MPI/OpenMP/PGAS (XcalableMP)

 Operating System
 Linux and McKernel

 Job scheduler
 Network topology aware scheduling
 Accounting to enable management

by each university
 Provision (for power saving,

exchange OS, ...)

Draft Specification of PostT2K Hardware

 Total Performance
 Peak FP performance: ～30 PF
 Memory: ～900 TB

 Node
 Peak floating point performance:

3+ TF
 Memory: ～115 GB

 Network
 Fat Tree, 100Gbps

10

2015/03/09

Compute
Nodes

I/O buffering
& Forwarding

1+ PB

HDD Storage
30+ PB

1-2 TB/s

500 -- 800 GB/s

Parallel File System

 Design of large-scale HPC system by adopting advanced and timely
(commodity) technologies.
 "Co-design" of the system with apps.
 A key point of "development" of modern HPC system is using advanced

commodities and configuring them in "optimal" way.
 Manycore processor is a "hot" and "advanced" commodity for building high performance

systems.
 ⇒ to produce a draft of Specification of the system for the procurement.

 As a co-design effort, research and development several software incl.
OS, programing lang., math libs are being carried out.
 Operating system for manycore - McKernel
 Programing lang. for manycore - XcalableMP
 Others, ... and developed software are to be deployed in the system.

 Collaboration with other universities (incl. U. Kyoto) and PC Cluster
Consortium, Japan.

Mission ① Research and Development
of large-scale HPC system

11

2015/03/09

Towards the Next Flagship Machine

2015/03/ 12

1

10

100

1000
Post K Computer

U. of Tsukuba
U. of Tokyo

PostT2K

T2K

PF

2008 2010 2012 2014 2016 2018 2020

U. of Tsukuba
U. of Tokyo
Kyoto U.

RIKEN

9 Universities
and National
Laboratories

PostT2K

Arch: Upscale Commodity
Cluster Machine
Soft: Technology Path-
Forward Machine

Manycore architecture

O(10K) nodes

• PostT2K is a production system
operated by both Tsukuba and Tokyo

PostK

Flagship Machine

Manycore architecture

O(100K-1M) nodes

• The post K project is to design the next
flagship system (exascale) and
deploy/install the system for services,
2020

• the project was launched at 2014

 Missions
 Building the Japanese national flagship supercomputer, Post K, and
 Developing wide range of HPC applications, running on Post K, in order to

solve social and science issues in our country.
 Planned Budget

 110 Billion JPY (about 0.91 Billion USD at the rete 120 JPY/$)
 including research, development (NRE) and acquisition/deploy, and

application development
 Post K Computer: System and Software

 RIKEN AICS is in charge of development
 Fujitsu is selected as a vendor partner
 Started from 2014

FLAGSHIP 2020 Project

13

: Compute Node

Basic Design Design and Implementation Manufacturing, Installation,
and Tuning Operation

CY

 The procurement for the development of the post-K computer
system was done.
 Fujitsu was selected as the vender partner.

 In the specification of RFP:
 Constraints are:

 Power capacity (about 30MW)
 Space for system installation (in Kobe AICS building)
 Budget (money) for development (NRE) and production.
 ... some degree of compatibility to the current K computer.

 We are now finishing the “basic design” of the system with
the vender partner.

 The system should be designed to maximize the performance of
applications in each computational science field.
 "Co-design" is a keyword!

Current status of the post-K project

14

Post K Computer

15

: Compute
Node

:Interconnect

Login
Servers

Maitenance
Servers

I/O Network

…
…

…

…
…
…
…
…
…
…
…
…

Hierarchical
Storage System

Portal
Servers

 CPU
• Many-core with Interconnect interface

integrated on chip
• Power Knob feature for saving power

 Interconnect
• TOFU (mesh/torus network)

Co-design may include:
• Compute Node

Features
• Core architecture,

FP performance
• Memory hierarchy,

control, capacity,
and bandwidth

• Network Performance
• I/O Performance

Co-design in HPC

 “Co-design” in Wikipedia
 “Co-design or codesign is a product, service, or organization

development process where design professionals empower, encourage,
and guide users to develop solutions for themselves.”

… ….
 “The phrase co-design is also used in reference to the simultaneous

development of interrelated software and hardware systems. The term
co-design has become popular in mobile phone development, where the
two perspectives of hardware and software design are brought into a
co-design process“

 The co-design of HPC must optimize and maximize
the benefits to cover many applications as possible.
 different from "co-design" in embedded systems. For example, in

embedded field, co-design sometimes includes "specialization"
for a particular applications.

 On the other hands, in HPC, the system will be shared by many
applications.

16

Why “co-design” is needed
in very high-end HPC and exascale?

 In modern very high-end parallel system, more performance can be
delivered (even upto “exascale”) by increasing the number of nodes,
but …

 We need to design the system by trade-off between “energy/power”
and “cost” and performance
 to satisfy constraints of “energy/power” and “cost”
 to maximize the performance.

 The elements of "co-design" in our post-K project may include
 Note that we are going to design processor/network and system with the

selected partner vender.
 Different from supercomputer acquisition in universities.

17

We need to design the system by taking characteristics of applications in
account
⇒ “codesign” in HPC

Co-design elements in HPC systems

 Hardware/architecture
 Node architecture (#core,

#SIMD, etc...)
 cache (size and bandwidth)
 network (topologies, latency

and bandwidth)
 memory technologies (HBM

and HMC, ...)
 specialized hardware

 #nodes
 Storage, file systems
 ... system configurations

18

 System software
 Operating system for many core

architecture
 communication library (low level

layer, MPI, PGAS)
 Programming model and

languages
 DSL, ...

 Algorithm and math lib
 Dense and Sparse solver
 Eigen solver
 ... Domain-specific lib and

framework

 And, Applications!

What applications does our co-design target for?

 SPIRE (Strategic Programs for Innovative
Research) Program for the K computer
 The projects were organized around 2011.

 For the post-K system,
 The committee (from academia and industry) was organized by

our government to identify "priority research area" (9) and
"frontier research area"(5) to be exploited by the post-K system.

 The call for project proposals for these "priority research area"
and "frontier research area" has been issued.

 The projects for “priority research area” were accepted for the
design of target apps and the co-design of the post-K system.

19

9 social and scientific priority issues (1/3)

2015/05/ Yutaka Ishikawa @ RIKEN AICS 21

Category Priority issues

Achievement
of a society
that provides
health and
longevity

① Innovative drug discovery infrastructure through functional control of
biomolecular systems

Develop ultra-high speed molecular simulations to achieve not only functional inhibition but also
functional control of many biomolecules including factors that cause side-effects, in order to discover
safe and highly effective drugs.

② Integrated computational life science to support personalized and preventive
medicine
Exploit large-scale analysis of healthcare and medical “Big Data” and biomedical simulations (heart,
brain and nervous system etc.) on the basis of optimal models obtained using these data, in order to
support medicine tailored to each individual and preventive medicine that can extend healthy life
expectancy.

Disaster
prevention
and global
climate
problem

③ Development of integrated simulation systems for hazard and disaster
induced by earthquake and tsunami
Develop an integrated simulation system for hazard and disaster which are induced by earthquake and
tsunami and are not estimated based on past experiences, by improving and strengthening a package
of related analysis methods. The system is to be implemented in disaster management systems of the
Cabinet Office and local governments, etc.

④ Advancement of meteorological and global environmental predictions utilizing
observational “Big Data”
Build an infrastructure for a system that employs model calculations incorporating observational “Big
Data” to accurately predict localized torrential rain, tornados, typhoons etc. and that also monitors
and projects impacts of environmental changes due to human activity, in order to contribute to
environmental policy, disaster prevention and health measures.

9 social and scientific priority issues (2/3)

2015/05/ Yutaka Ishikawa @ RIKEN AICS 22

Category Priority issues

Energy
problem

⑤ Development of new fundamental technologies for high-efficiency energy
creation, conversion/storage and use
Perform full-system simulations at the molecular level for complicated real-world complex systems to explain
the entire process of high-efficiency energy creation, conversion/storage and use in coordination with
experimentation, in order to develop new fundamental technologies to resolve energy-related problem.

⑥ Accelerated Development of Innovative Clean Energy Systems
Subject the complex physical phenomena that form the core of energy systems to first-principles analysis to
predict their occurrence and explicate their comprehensive behavior for accelerating the practical application
of innovative and clean energy systems that have ultra-high efficiency and low environmental impact.

Enhancement
of industrial
competitivene
ss

⑦ Creation of new functional devices and high-performance materials to support
next-generation industries
Accelerate the development of electronics technologies, structural materials,
functional chemical products etc. that have great international competitiveness, through coordination with
large-scale massively parallel computing and the analysis of “Big Data” and data from measurement and
experimentation, in order to create devices and materials to support next-generation industries.

⑧ Development of Innovative Design and Production Processes that Lead the
Way for the Manufacturing Industry in the Near Future
Conduct research and development for innovative design techniques, where the product concept is
quantitatively assessed at the initial stage and optimization is performed. By implementing innovative
manufacturing processes that reduce costs and by performing ultra-high speed integration simulations, both
of which form the core of the research and development efforts, high value-added product development can be
achieved.

9 social and scientific priority issues (3/3)

2015/05/ Yutaka Ishikawa @ RIKEN AICS 23

Category Priority issues

Development
of basic
science

⑨ Elucidation of the fundamental laws and evolution of the universe
Realize precise calculations of the phenomena over wide range of scales from elementary particles to the

universe. Combining with the data from large-scale experiments and observations, they play crucial roles to
address the remaining problems in the history of the universe that extend across particle, nuclear and astro
physics.

Exploratory challenges

⑩ Frontiers of basic science: challenge to the limits
At the frontiers of basic science where researchers pursue the limits and extreme conditions, efforts

will be made to resolve difficult problem and challenges that have been answered neither by
experiments, observations nor even by individual achievements of computational science using the
K Computer. Co-creation of new science and interdisciplinary collaboration using the "Post-K computer” is
called for.

⑪ Construction of models for interaction among multiple socioeconomic
To give policy and measures the agility to deal with various problems produced in our complex and rapidly

changing modern society, research and development of systems for determination, analysis and prediction
will be conducted, taking into account the effect of the mutual influence of individual elements of social
activities such as transport and
the economy.

⑫ Elucidation of the birth of exoplanets (Second Earths) and the environmental
variations of planets in the solar system
Through multidisciplinary approach under the collaboration of computational sciences (in the fields of astrophysics,

geophysical/planetary science, meteorology, and molecular science), we achieve large-scale calculations, which can be
directly confronted to observations and experiments, and explore the origin of terrestrial planets, the environment of
the solar system, and interstellar molecular science.

⑬ Elucidation of how neural networks realize thinking and its application to
artificial intelligence
By integrating big data produced by innovative brain science technologies, large-scale multi-level

models of the brain are constructed and through large-scale simulations using the “Post-K computer,”
the brain’s mechanism of thinking by neural networks is reproduced and applied to artificial intelligence.

24

4 exploratory Challenges

2015/05/ Yutaka Ishikawa @ RIKEN AICS 24

Research organizations for 4 challenges have not been selected

Selected target apps from each area for “codesign”

25

Target Application

Program Brief description

① GENESIS MD for proteins

② Genomon Genome processing (Genome alignment)

③ GAMERA Earthquake simulator (FEM in unstructured & structured
grid)

④ NICAM+LETK Weather prediction system using Big data (structured grid
stencil & ensemble Kalman filter)

⑤ NTChem molecular electronic (structure calculation)

⑥ FFB Large Eddy Simulation (unstructured grid)

⑦ RSDFT an ab-initio program (density functional theory)

⑧ Adventure Computational Mechanics System for Large Scale Analysis
and Design (unstructured grid)

⑨ CCS-QCD Lattice QCD simulation (structured grid Monte Carlo)

Important aspects of post-
petascale computing
 Large-scale system
 < 10^6 nodes, for FT

 Strong-scaling
 > 10TFlops/node
 accelerator, many-cores

 Power limitation
 < 20-30 MW

Issues for exascale computing

26

1 10 102 103 104 105 106

1GFlops
109

1TFlops
1012

1PFlops
1015

1EFlops
1018

#node

Peak
flops

limitation
of #node

Exaflops system

PACS-CS (14TF)

petaflops
by 100-1000nodes

NGS
> 10PF

T2K-tsukuba
(95TF)

the K computer

Simple relationship between
#nodes and node performance
to achieve exascale

 Node performance must increase! Because the system scale is limited
by space and power.

 Memory performance will be limited. So, the cap between B/F will be
getting worse.

 Improvement of performance/power will be difficult and limited.

A projection: Pre-exa, exa, post-exa

27

Pre-exa exascale Post-exa
System performance (PF) 50～500 500～5,000 1,000～10,000

node performance (TF) 1～10 5～50 10～100

#number of node (K) 5～500 10～1,000 10～1,000

Performance/ power(GF/W) 2～20 20～200? 400?
Memory bandwidth and

technology
0.5～1TB/s (HBM)

150GB/s (DDR4)
1～4TB/s (HBM) ???

 Scalability, Locality and scalable Algorithms in
system-wide

 Strong Scaling in node
 Workflow and Fault-Resilience
 (Power-aware)

Challenges of Programming Languages/models
for exascale computing

28

 X is OpenMP!

 “MPI+Open” is now a standard programming for high-
end systems.
 I’d like to celebrate that OpenMP became “standard” in

HPC programming

 Questions:
 “MPI+OpenMP” is still a main programming model for

exa-scale?

“MPI+X” for exascale?

29

 What happens when executing code using all cores in
manycore processors like this ?

 What are solutions?
 MPI+OpenMP runs on divided small “NUMA domains”

rather than all cores?

Question

30

MPI_recv …
#pragma omp parallel for
for (… ; … ; …) {

… computations …
}
MPI_send …

Data comes into “main
shared memory”

Cost for “fork” become large

data must be taken from Main
memory

Cost for “barrier” become large

MPI must collect data from each
core to send

Barrier in Xeon Phi

31

 Omni OpenMP
 sense-reversing barrier

 using conditional variable
 heavy access to a shared variable (sense)

 not scalable on Xeon Phi !!!
 Barrier Benchmark using pthread

and Argbot
 cond: Omni OpenMP algorithm
 count: using gnu __sync_fetch_and_dec
 tree: (binary) tree barrier
 argobots: built-in barrier

Xeon Phi 7120P
(61 cores)

native mode
num of ESs: 128

num of ULTs: 2~128

 Multitasking/Multithreaded execution:
many “tasks” are generated/executed and
communicates with each others by data
dependency.
 OpenMP task directive, OmpSS, PLASMA/QUARK,

StarPU, ..
 Thread-to-thread synchronization

/communications rather than barrier
 Advantages

 Remove barrier which is costly in large scale
manycore system.

 Overlap of computations and computation is done
naturally.

 New communication fabric such as Intel OPA
(OmniPath Architecture) may support core-to-core
communication that allows data to come to core
directly.

 New algorithms must be designed to use
multitasking

Multitasking model

32

From PLASMA/QUARK slides by ICL, U. Teneessee

 Light-weight one-sided communication and low overhead synchronization semantics.
 PAGS concept is adopted in Coarray Fortran, UPC, X10, XMP.

 XMP adopts notion Coarray not only Fortran but also “C”, as “local view” as well as
“global view” of data parallelism.

 Advantages and comments
 Easy and intuitive to describe, not noly one side-comm, but also strided comm.
 Recent networks such as Cray and Fujitsu Tofu support remote DMA operation which

strongly support efficient one-sided communication.
 Other collective communication library (can be MPI) are required.

PGAS (Partitioned Global Address Space) models

33

CGPOP : 7500 nodes NICAM : 640 nodes

Case study of XMP on K computer
CGPOP, NICAM: Climate code

5-7 % speed up is obtained by replacing
MPI with Coarray

XcalableMP(XMP) http://www.xcalablemp.org
 What’s XcalableMP (XMP for short)?
 A PGAS programming model and language

for distributed memory , proposed by XMP
Spec WG

 XMP Spec WG is a special interest group to
design and draft the specification of
XcalableMP language. It is now organized
under PC Cluster Consortium, Japan. Mainly
active in Japan, but open for everybody.

 Project status (as of Nov. 2014)
 XMP Spec Version 1.2 is available at XMP site.

new features: mixed OpenMP and OpenACC ,
libraries for collective communications.

 Reference implementation by U. Tsukuba and
Riken AICS: Version 0.9 (C and Fortran90)
is available for PC clusters, Cray XT and K
computer. Source-to- Source compiler to code
with the runtime on top of MPI and GasNet.

 HPCC class 2 Winner 2013. 2014

34

Po
ss

ib
lit

y
of

 P
er

fo
rm

an
ce

 tu
ni

ng

Programming cost

MPI

Automatic
parallelization

PGAS

HPF

chapel

XcalableMPXcalableMP

int array[YMAX][XMAX];

#pragma xmp nodes p(4)
#pragma xmp template t(YMAX)
#pragma xmp distribute t(block) on p
#pragma xmp align array[i][*] to t(i)

main(){
int i, j, res;
res = 0;

#pragma xmp loop on t(i) reduction(+:res)
for(i = 0; i < 10; i++)
for(j = 0; j < 10; j++){

array[i][j] = func(i, j);
res += array[i][j];

}
}

add to the serial code : incremental parallelization

data distribution

work sharing and data synchronization

 Language Features
 Directive-based language extensions for Fortran

and C for PGAS model
 Global view programming with global-view

distributed data structures for data parallelism
 SPMD execution model as MPI
 pragmas for data distribution of global array.
 Work mapping constructs to map works and

iteration with affinity to data explicitly.
 Rich communication and sync directives such

as “gmove” and “shadow”.
 Many concepts are inherited from HPF

 Co-array feature of CAF is adopted as a part of
the language spec for local view programming
(also defined in C).

XMP provides a global
view for data parallel

program in PGAS
model

Code example

XcalableMP as evolutional approach
 We focus on migration from existing codes.

 Directive-based approach to enable parallelization by adding
directives/pragma.

 Also, should be from MPI code. Coarray may replce MPI.

 Learn from the past
 Global View for data-parallel apps. Japanese community had experience of

HPF for Global-view model.

 Specification designed by community
 Spec WG is organized under the PC Cluster Consortium, Japan

 Design based on PGAS model and Coarray (From CAF)
 PGAS is an emerging programming model for exascale!

 Used as a research vehicle for programming lang/model research.
 XMP 2.0 for multitasking.
 Extension to accelerator (XACC)

 Specification v 1.2:
 Support for Multicore: hybrid XMP and OpenMP is defined.
 Dynamic allocation of distributed array

 A set of spec in version 1 is now “converged”. New functions should be
discussed for version 2.

 Main topics for XcalableMP 2.0: Support for manycore
 Multitasking with integrations of PGAS model
 Synchronization models for dataflow/multitasking executions
 Proposal: tasklet directive

 Similar to OpenMP task directive
 Including inter-node communication on PGAS

XcalableMP 2.0

36

taskA

A[0:25] -> B[0:25]

Node1 Node2 Node3 Node4

taskB

A[0:25] A[25:25] A[50:25] A[75:25]

int A[100], B[25];
#pragma xmp nodes P()
#pragma xmp template T(0:99)
#pragma xmp distribute T(block) onto P
#pragma xmp align A[i] with T(i)
/ … /
#pragma xmp tasklet out(A[0:25], T(75:99))

taskA();
#pragma xmp tasklet in(B, T(0:24)) out(A[75:25])

taskB();
#pragma xmp taskletwait

 The detail spec of the directive is under
discussion in spec-WG

 Currently, we are working on prototype
implementations and preliminary evaluations

 Example: Cholesky Decomposition

Proposal of Tasklet directive

37

double A[nt][nt][ts*ts], B[ts*ts], C[nt][ts*ts];
#pragma xmp node P(*)
#pragma xmp template T(0:nt-1)
#pragma xmp distribute T(cyclic) onto P
#pragma xmp align A[*][i][*] with T(i)

for (int k = 0; k < nt; k++) {
#pragma xmp tasklet inout(A[k][k], T(k+1:nt-1))
omp_potrf (A[k][k], ts, ts);

for (int i = k + 1; i < nt; i++) {
#pragma xmp tasklet in(B, T(k)) inout(A[k][i], T(i+1:nt-1))
omp_trsm (B, A[k][i], ts, ts);

}
for (int i = k + 1; i < nt; i++) {

for (int j = k + 1; j < i; j++) {
#pragma xmp tasklet in(A[k][i]) in(C[j], T(j)) inout(A[j][i])
omp_gemm (A[k][i], C[j], A[j][i], ts, ts);

}
#pragma xmp tasklet in(A[k][i]) inout(A[i][i])
omp_syrk (A[k][i], A[i][i], ts, ts);

}
}
#pragma xmp taskletwait

node 1 A[0][0]

A[0][0]
A[0][1]

A[0][0]
A[0][2]

A[0][0]
A[0][3]

A[0][1]
A[1][1]

A[0][2]
A[0][1]
A[1][2]

A[0][2]
A[2][2]

A[0][3]
A[0][1]
A[1][3]

A[0][3]
A[0][2]
A[2][3]

A[0][3]
A[3][3]

A[1][1]

A[1][1]
A[1][2]

A[1][1]
A[1][3]

A[1][2]
A[2][2]

A[1][3]
A[1][2]
A[2][3]

A[1][3]
A[3][3]

A[2][2]

A[2][2]
A[2][3]

A[2][3]
A[3][3]

A[3][3]

potrf

trsm

syrk

gemm

black : inout
white : in

: depend
: comm

node 3node 2 node 4

Cholesky Decomposition
distributed on 4 nodes

 Two approaches:
 SIMD for core in manycore processors
 Accelerator such as GPUs

 Programming for SIMD
 Vectorization by directives or automatic compiler technology
 Limited bandwidth of memory and NoC
 Complex memory system: Fast-memory (MD-DRAM, HBM, HMC) and

DDR , VMRAM

 Programming for GPUs
 Parallelization by OpenACC/OpenMP 4.0. Still immature but getting

matured soon
 Fast memory (HMB) and fast link (NV-Link): similar problem of complex

memory system in manycore.
 Programming model to be shared by manycore and accelerator for high

productivity.

Strong Scaling in node

38

 New Xeon Phi (KNL) has fast memory called MC-DRAM.
 KNL performance: < 5 TF (Theoretical Peak)
 DDR4: 100～200 GB/s, MC-DRAM: 0.5 TB/s
 How to use?

How to use MC-DRAM in KNL?

39

From Intel Slide
presented at
HotChips 2015

 Extension of XcalableMP for
GPU
 A project of U. Tsukuba leaded by Prof.

Taiuske Boku
 “vertical” integration of XcalableMP

and OpenACC
 Data distribution for both host and GPU

by XcalableMP
 Offloading computations in a set of

nodes by OpenACC

 Proposed as unified parallel programming
model for many-core architecture &
accelerator
 GPU, Intel Xeon Phi
 OpenACC supports many architectures

XcalableACC(ACC) = XcalableMP+OpenACC

40

#pragma xmp nodes p(NUM_COLS, NUM_ROWS)
#pragma xmp template t(0:NA-1,0:NA-1)
#pragma xmp distribute t(block, block) onto p
#pragma xmp align w[i] with t(*,i)
#pragma xmp align q[i] with t(i,*)
double a[NZ];
int rowstr[NA+1], colidx[NZ];
…
#pragma acc data copy(p,q,r,w,rowstr[0:NA+1]¥

, a[0:NZ], colidx[0:NZ])
{

…
#pragma xmp loop on t(*,j)
#pragma acc parallel loop gang

for(j=0; j < NA; j++){
double sum = 0.0;

#pragma acc loop vector reduction(+:sum)
for (k = rowstr[j]; k < rowstr[j+1]; k++)

sum = sum + a[k]*p[colidx[k]];
w[j] = sum;

}
#pragma xmp reduction(+:w) on p(:,*) acc
#pragma xmp gmove acc

q[:] = w[:];
…

} //end acc data

Source Code Example: NPB CG

 Petascale system was targeting some of “capability”
computing.

 In exascale system, it become important to execute huge
number of medium-grain jobs for parameter-search type
applications.

Workflow to control and collect/process data is
important, also for “big-data” apps.

Prog. Models for Workflow and data managements

41

International Collaboration between DOE and MEXT

42

PROJECT ARRANGEMENT
UNDER THE IMPLEMENTING ARRANGEMENT

BETWEEN
THE MINISTRY OF EDUCATION, CULTURE, SPORTS, SCIENCE AND TECHNOLOGY OF JAPAN

AND
THE DEPARTMENT OF ENERGY OF THE UNITED STATES OF AMERICA

CONCERNING COOPERATION IN RESEARCH AND DEVELOPMENT IN ENERGY AND RELATED
FIELDS

CONCERNING COMPUTER SCIENCE AND SOFTWARE RELATED TO CURRENT AND FUTURE
HIGH PERFORMANCE COMPUTING FOR OPEN SCIENTIFIC RESEARCH

Yoshio Kawaguchi (MEXT, Japan)
and William Harrod(DOE, USA)Purpose: Work together where it is mutually beneficial to

expand the HPC ecosystem and improve system capability
– Each country will develop their own path for next

generation platforms
– Countries will collaborate where it is mutually

beneficial
• Joint Activities

– Pre-standardization interface coordination
– Collection and publication of open data
– Collaborative development of open source software
– Evaluation and analysis of benchmarks and

architectures
– Standardization of mature technologies

• Kernel System Programming Interface
• Low-level Communication Layer
• Task and Thread Management to Support Massive

Concurrency
• Power Management and Optimization
• Data Staging and Input/Output (I/O) Bottlenecks
• File System and I/O Management
• Improving System and Application Resilience to Chip

Failures and other Faults
• Mini-Applications for Exascale Component-Based

Performance Modelling

Technical Areas of Cooperation

PGAS and Advanced programming models for exascale systems
• Coordinators

– US: P. Beckman (ANL), JP: M. Sato (RIKEN)
• Leaders

– US: L. Kale (UIUC), B Chapman (U Huston), J. Vetter
(ORNL), P. Balaji (ANL)

– JP: M Sato (RIKEN)
• Collaborators

– S. Seo (ANL), D Bernholdt (ORNL), D. Eachempati(UH)
– H. Murai (RIKEN), J. Lee (RIKEN), N. Maruyama

(RIKEN), T. Boku (U. Tsukuba)
• Collaboration topics

– Extension of PGAS (Partitioned Global Address Space)
model with language constructs of multitasking
(multithreading) for manycore-based exascale systems

– Runtime design for PGAS communication and
multitasking

– Advanced programming models to support both
manycore-based and accelerator-based exascale
system for high productivity.

– Advanced programming models for dynamic load-
balancing and migration in exascale systems

• How to collaborate
– Twice meetings per year
– Student / young researchers exchange, sharing codes
– Funding:

• US: ARGO, X-stack(XPRESS), X-stack(Vancouver,
ARES)

• JP: FLAGSHIP 2020, PP-CREST (JP) 43

• Deliverables
– Concepts for PGAS and multithreading integration for manycore-based

exascale systems.
– Concepts for advanced programming model to be shared by both manycore

and accelerators-based systems.
– Pre-standardization of Application Programming Interface for multithreading

(based on Argobots) and PGAS
• Recent activities and plans

– AICS teams visited UH, UIUC and ANL for discussions.
– Start using Argobots for Omni OpenMP compiler and produced preliminary

results on intel Xeon Phi.
– AICS invited Post-doc from UH for collaborations on PGAS
– ORNL visited AICS to have a meeting for the collaboration
– JP (AICS , Tsukuba) will send Post-doc and students to ANL and UH, ORNL
– JP and ORNL will have a meeting in JP or US how to collaborate.

US JP

Supercomputers in US
PostT2K, Post K, Tsubame3

UIUC: Charm++
Advanced runtime
and MSA

XcalableMP 2.0,
(PGAS+multithreading)
Omni compiler infra.

UH: OpenUH Coarray
Fortran compiler

PGAS+Multitasking
Extension for manycore system

Runtime design for PGAS
comm and Multithreading

Advanced prog. Models for
maycore and accelerator

systems

Advanced prog. Models for
load-balancing and migrations

PGAS and advanced
programming models

XcalableACC
(XcalableMP+
OpenACC)

DSL and compiler
using OpenARC
(Maruyama, AICS,
Matsuoka, Titech)

ANL: Argobots light-
weight thread library

T. Boku
(U. Tsukuba)

ORNL: OpenARC
compiler project

 FLAGSHIP 2020 project
 To develop the next Japanese flagship computer system, post-K
 The basic architecture design and target application performances

will be decided by 2015 3Q
 “Co-design” effort will be continued (application design for

architecture)

 XcalableMP is our research vehicle for programming
language/model research.
 XMP 2.0 for multitasking for many-core-based system.
 Extension to accelerator (XACC)

 Schedule

Concluding remarks

44

: Compute
Node

Basic Design Design and Implementation Manufacturing, Installation, and
Tuning Operation

CY

	スライド番号 1
	Outline
	AICS and Supercomputer Centers in Japanese Universities
	Supercomputers in Japan
	Supercomputer Centers operated �at Japanese Universities　and Plan/schedule
	JCAHPC and Post-T2K project
	JCAHPC and Kashiwa
	Mission ①　Research and Development �of large-scale HPC system　
	Items for co-design
	Draft Specification of PostT2K Hardware
	Mission ①　Research and Development �of large-scale HPC system　
	Towards the Next Flagship Machine
	FLAGSHIP 2020 Project
	Current status of the post-K project
	Post K Computer
	Co-design in HPC
	Why “co-design” is needed �in very high-end HPC and exascale?
	Co-design elements in HPC systems
	What applications does our co-design target for?
	スライド番号 20
	9 social and scientific priority issues (1/3)
	9 social and scientific priority issues (2/3)
	9 social and scientific priority issues (3/3)
	4 exploratory Challenges
	Selected target apps from each area for “codesign”
	Issues for exascale computing
	A projection: Pre-exa, exa, post-exa
	Challenges of Programming Languages/models �for exascale computing
	“MPI+X” for exascale?
	 Question
	Barrier in Xeon Phi
	Multitasking model
	PGAS (Partitioned Global Address Space) models
	XcalableMP(XMP) http://www.xcalablemp.org
	XcalableMP as evolutional approach
	XcalableMP 2.0
	Proposal of Tasklet directive
	Strong Scaling in node
	How to use MC-DRAM in KNL?
	XcalableACC(ACC) = XcalableMP+OpenACC
	Prog. Models for Workflow and data managements
	International Collaboration between DOE and MEXT
	PGAS and Advanced programming models for exascale systems
	Concluding remarks

